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ABSTRACT 

Tr ia l  syntheses  of beryl l ium Grignards y ie lded  i n s u f f i c i e n t  

q u a n t i t i e s  of material requi red  f o r  the  success fu l  e l e c t r o d e p o s i t i o n  

of beryll ium. 

were developed through the  use  of inorganic  and organic  compound 

a d d i t i v e s  t o  an aluminum p l a t i n g  ba th  ( A N 1  

e t h e r ) .  

t h e  improved ba ths  w a s  i n  t he  range of 145 - 228 MN/m 

p s i ) .  
used t o  scan a l a r g e  number of e l e c t r o l y t e s  i n  uncovering the  i m -  

proved p l a t i n g  baths .  The t r iangular-wave v o l t a m e t r i c  scan  a l s o  

w a s  found t o  be a u s e f u l  method i n  monitor ing f o r  s i g n s  of d e t e r i -  

o r a t i o n  of the  p l a t i n g  bath.  

Aluminum-alloy and hardened-aluminum p l a t i n g  ba ths  

and L i A t H  i n  d i e t h y l  

The u l t i m a t e  y i e l d  s t r e n g t h  of the  aluminum d e p o s i t s  from 

(21K t o  33K 

3 4 

2 

A voltammetric technique using a t r i a n g u l a r  waveform w a s  
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SECTION 1 

INTRODUCTION 

Hollow-core (modified honeycomb) s o l a r  panel  s u b s t r a t e s  of h igh - s t r eng th ,  

l i gh twe igh t ,  and nonmagnetic metals are very d e s i r a b l e  f o r  space 

a p p l i c a t i o n s .  

s t r u c t u r e  a t  present  i s  pure aluminum. However, t he  electroformed 

aluminum possesses  a r e l a t i v e l y  low y i e l d  s t r e n g t h  and modulus of 

e l a s t i c i t y .  

of the  technology r equ i r ed  f o r  t h e  s u c c e s s f u l  e l e c t r o d e p o s i t i o n  of 

h igh - s t r eng th  aluminum a l l o y s  and o t h e r  s t rong ,  nonmagnetic l i g h t  metals 

such as bery l l ium.  

The only metal s u i t a b l e  f o r  e lec t roforming  a nonmagnetic 

The present  c o n t r a c t  work i s  concerned wi th  t h e  development 

The present  c o n t r a c t  work, t h e r e f o r e ,  i s  d iv ided  i n t o  t h r e e  main areas. 

The f i r s t  area i s  concerned wi th  t h e  development of a bery l l ium p l a t i n g  

bath u t i l i z i n g  an e t h e r e a l  s o l u t i o n  of a bery l l ium Grignard.  

previous NASA work (NASA Report CR-66427), a p l a t i n g  ba th  w a s  developed 

f o r  t h e  e l e c t r o d e p o s i t i o n  of pure magnesium u t i l i z i n g  an e t h e r e a l  s o l u t i o n  

of a magnesium Grignard.  The work e f f o r t  was t o  be concent ra ted  on a 

s tudy of va r ious  bery l l ium Grignard p repa ra t ion  methods f o r  ob ta in ing  

s u i t a b l e  q u a n t i t i e s  f o r  use i n  a p l a t i n g  s o l u t i o n .  

During 

The second area is  concerned wi th  development o f  a hardened aluminum o r  

aluminum-alloy p l a t i n g  ba th .  The b a s i c  aluminum p l a t i n g  s o l u t i o n  (APS) 

of aluminum c h l o r i d e  and l i t h ium aluminum hydride i n  e t h y l  e t h e r  produces 

a very  s o f t  and weak e l e c t r o d e p o s i t .  

involves  t h e  use of inorganic  and organic  compound a d d i t i v e s  t o  t h e  A P S  t o  

i nc rease  t h e  phys ica l  s t r e n g t h  of t h e  aluminum e l e c t r o d e p o s i t  through 

hardening and/or  a l l o y  formation. 

The work i n  t h e  second area, then,  
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The third area of work is concerned with the molecular-level electro- 

chemical scanning studies of mixed-solvent systems, mixed-salt systems, 

and combinations of systems that could potentially produce aluminum- 

alloy electrodeposits with greater physical properties than pure 

aluminum. A single-sweep, repetitive, voltage-time triangular waveform 

was to be used. 

. 
Flat plate and hollow-core demonstration samples (10 cm x 15 cm) were 
to be electroformed from the best beryllium, best hardened aluminum, 

and best aluminum-alloy plating baths. 

7248-Final 2 



SECTION 2 

SUMMARY 

f 

Attempts were made under the present contract to develop a plating bath 

(of the Grignard type) for the electrodeposition of high-purity beryllium 

metal. 
and strengthen the aluminum electrodeposit through the use of various 

bath additives. 

an electrolyte-voltametric-scanning method, LI 

Studies were also made of the basic aluminum bath to improve 

Screening of the various additives were performed using 

Several methods of preparing beryllium Grignard were investigated 

during the study. 

metal, an alkyl halide, and a catalyst together in ethyl ether pro- 

duced very low yields of beryllium Grignard. The indirect method 
of preparing beryllium alkyls in situ was somewhat more successful. 

Mixing BeCl 

bromide (EMB) produced a solution of dialkyl beryllium along with 

magnesium halides. Only powdery Mg-Be alloy electrodeposits were 

obtained from this solution. 

(in benzene), instead of EMB, with the BeCl 

a poor electrodeposit of beryllium. 

The direct preparation method of heating beryllium 

etherate with an ethereal solution of ethyl magnesium 2 

The use of a solution of ethyl lithium 

etherate also produced 2 

Alloys of aluminum and beryllium were obtained by electrolysis of 

mixtures of BeCl etherate with ethereal LiAlH or the standard 2 4 
aluminum plating solution (APS= 3.73M AlCl 0.33 M LiA1H4). The 

BeCl -LiAlH system produced brittle, inferior alloy deposits 

compared to the BeC12-APS system, The best alloy deposit was 

obtained at a BeCl concentration of 1.25M in the APS. The deposit 2 
contained 0.04% Be; it had an average ultimate strength of 110 MN/m 
(16,000 psi) 

3 ’  

2 4 

2 
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h 

TheZa7-APS systems yielded Zn-A1 alloys on electrolysis, but the 

deposits were extremely brittle with no structural strength., 
- 

Plating baths formulated from ethereal EMB and LiAlH produced 

Mg-A1 alloys which were thin, peeled, and highly stressed. Many of 

the solutions were poor conductors. 

4 

An aluminum alloy containing titanium was obtained fromethe APS 

containing 0.03-0,04M titanyl acetylacetonate. The deposit contained 

0.07% Ti; it had an average yield strength (0.2% offset) of 99 MN/m 2 

(14,400 psi) and an average ultimate strength of 120 MN/mL (17,400 psi). 

Several hundred solution combinations of the APS containing inorganic 
and organic compound additives were examined in attempts to develop 

a hardened aluminum plating bath. Of all the compounds tested, the 

following gave the most improved, hardened electrodeposit: 

(1.25M), titanyl acetylacetonate (0.03-0.04M), carbanilide (OO114M), 

bis (2-butoxyethyl) ether (17% by volume), benzonitrile (0.175M), 

ferrocene (0.188M), oxydianiline (OeO895M), and pyridine (0.124M). 

Of these, pyridine produced the hardest and strongest electrodeposit. 
It had a yield strength (0.2% offset) of 198 MN/m2 (28,700 psi) and 

BeC12 

L an ultimate strength of 222 MN/m (32,300 psi), 

Many of the solutions tested in the electrodeposition studies were 

examined through the use of single-sweep voltammetry using a triangular 

waveform. Voltage derivative curves (dV/dt-V) were obtained of the 

various solutions to observe the values of the reduction potentials. 

The voltage derivative curves were found useful for correlating the 
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n a t u r e  of t h e  e l e c t r o d e p o s i t  ( i .e . ,  metall ic o r  nonmetal l ic)  t o  the 

type of p l a t i n g  so lu t ion .  

were found t o  be d e t e c t a b l e  by the  single-sweep technique. 

Signs of d e t e r i o r a t i o n  of the p l a t i n g  b a t h  

Large f l a t - p l a t e  and hollow-core (10 x 15 cm) samples were e l e c t r o -  

formed from the  APS-t i tanyl  ace ty l ace tona te ,  APS-beryllium c h l o r i d e ,  

and APS-pyridine p l a t i n g  so lu t ions .  I 
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SECTION 3 

TECHNICAL DISCUSSION 

3 .1  ELECTRODEPOSITION OF BERYLLIUM 

3.1.1 SYNTHESIS OF BERYLLIUM GRIGNARDS 

3.1.1.1 Direct Synthes is  

Since Grignard reagents  have been used wi th  success  i n  t h i s  l abora to ry  

( i n  t h e  THF-ether s o l u t i o n )  f o r  t h e  e l e c t r o d e p o s i t i o n  of magnesium, i t  

w a s  decided t o  a t tempt  p repa ra t ion  of t h e  bery l l ium counterpar t  f o r  

subsequent bery l l ium e l e c t r o d e p o s i t i o n  tests. 

o r  organoberyll ium h a l i d e s  was repor ted  by Gilman and Schulze (1) by 

h e a t i n g  bery l l ium (and a c a t a l y s t )  wi th  a l k y l  h a l i d e s  i n  e t h e r  s o l u t i o n  

f o r  more than  15 hours  a t  353 t o  363'K (8OoC t o  90OC). 

Successful  p repa ra t ion  

Since e t h y l  e t h e r  h a s  a very  high vapor pressure  a t  temperatures  over 

373'K ( 100°C) , a s t a i n l e s s  steel pressure  cy l inde r  r a t e d  a t  1 3 . 4  MN/m 

(1800 p s i )  w a s  chosen as t h e  r e a c t i o n  v e s s e l .  It w a s  equipped wi th  

a thermocouple and pressure  gauge s o  t k a t  t h e  r e a c t i o n  condi t ions  could 

be monitored. A f t e r  loading,  i t  w a s  placed i n  an  oven a t  t h e  d e s i r e d  

temperature.  

under a dry  n i t rogen  atmosphere. 

2 

A l l  t r a n s f e r s  and loading took p lace  i n  t h e  glove box 

Before use,  t h e  a l k y l  h a l i d e s  were twice d i s t i l l e d  over CaSO t o  

remove any water. 
4 

i n  t h e  glove box t o  remove t h e  last traces of mois ture .  Jus t  before  

loading i n t o  t h e  r e a c t i o n  v e s s e l ,  t h e  bery l l ium ch ips  (or  powder) were 

4 
The anhydrous e t h y l  e t h e r  w a s  d i s t i l l e d  over L i A l H  
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ground i n  a mortar  t o  expose f r e s h  m e t a l  s u r f a c e s  f o r  r e a c t i o n .  

Attempts w e r e  made t o  prepare  l a r g e  q u a n t i t i e s  of e t h y l  bery l l ium 

iod ide  and e t h y l  bery l l ium bromide by h e a t i n g  an  e t h y l  e t h e r  s o l u t i o n  

of t h e  r e s p e c t i v e  a l k y l  h a l i d e  wi th  be ry l l i um metal powder f o r  several 

days a t  388'K t o  423'K. Beryll ium ch lo r ide ,  mercury(I1) ch lo r ide ,  and 

e t h y l  magnesium c h l o r i d e  were each used as c a t a l y s t s .  While it appears  

t h a t  organoberyll ium h a l i d e s  can be synthes ized  i n  t h e  above manner, 

t h e  method s u f f e r s  from very  poor y i e l d s .  A s  a r e s u l t ,  i t  is  no t  a 

p r a c t i c a l  method of prepar ing  s u i t a b l e  q u a n t i t i e s  of bery l l ium Grignard 

f o r  e l ec t rodepos i t i on  tests. 

. 

3 . 1 . 1 . 2  I n d i r e c t  Synthes is  

A s  t he  d i r e c t - s y n t h e s i s  approach proved t o  be n e i t h e r  p r a c t i c a l  nor 

f r u i t f u l ,  it w a s  d i scarded  i n  favor  of a n  i n d i r e c t - s y n t h e s i s  approach. 

The Grignard reagent  i s  repor ted  t o  be a m i x t u r e  of compounds according 

t o  t h e  fol lowing equi l ibr ium (2,3) :  

2RMgXs R2%+ %X2 

Addit ion of BeC12.2Et  0 t o  t h e  above s o l u t i o n  causes  t h e  fol lowing 

r e a c t i o n  t o  t a k e  p lace  (4,5) :  
2 

2RMgX+BeCl2.2Et2W R2Be+MgX2+ MgC12+ 2Et20 

Addit ion of more B e C l  .2E 0 t o  a n  e t h e r  s o l u t i o n  of R Be ( i n  a 1:l mole 2 2  2 
r a t i o )  should then  y i e l d  t h e  equ iva len t  of a n  e t h e r  s o l u t i o n  of  RBeX. 

I 
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2' 
The Grignard solutions (3M) were obtained commercially and the BeCl 

2Et 0 solution was prepared in the laboratory. is added 
to ethyl ether, BeCl .2Et 0 is formed, The etherate dissolves 

2 2 
only enough ether to form a solution which is approximately 2,6M 
in the etherate. The denser etherate solution is not miscible 

with ethyl ether and is, therefore, easily separated from it. 

a 2.6M solution of BeCl .2Et 0 is readily obtained. 

When BeCl 2 2 

Thus, 
. 2 2 

The BeCl etherate solution was mixed with various ethereal Grignard 

reagents in various proportions (BeC1 :Grignard mole ratio = 0.10 
to 4.1:1.0), and the precipitate which formed was removed by filtration. 

The resulting filtered solution was then electrolyzed (aluminum 

anodes and copper cathodes) at room temperature with 6 . 4  mm (&'I) 

electrode spacings. 
significant electrodeposits for the major metallic constituents. 

2 
2 

Qualitative analyses were performed on any 

The better electrodeposits were obtained using the EtMgBr Grignard, 

but even these were not satisfactory in terms of obtaining, a deposit 

with any structural strength. 

powdery, and brittle. The majority of the solutions examined were 

not very conductive. Alloy Mg-Be electrodeposits were obtained in 

the majority of cases. Deposits of pure beryllium could possibly 
be obtained if the Et Be or Me Be were isolated in the pure state 

for electrolysis studies. 

to BeC12-ether solutions in a 1:l mole ratio should then produce the 
beryllium Grignard. 

Most of the deposits were dull, 

2 2 
Addition of the dialkyl beryllium compounds 

The BeCl etherate solution was also reacted with EtLi to produce 

Et2Be: 
2 

2EtLi + BeC12.Et20 +2LiC1 + Et2Be 3. Et20 
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The LiCl w a s  removed by f i l t r a t i o n  and more B e C l  e t h e r a t e  s o l u t i o n  

w a s  added t o  t h e  E t  B e  s o l u t i o n  ( i n  a 1:l mole r a t i o )  t o  form E t B e C 1 ,  

t h e o r e t i c a l l y .  

2 

2 

However, s i n c e  t h e  E t L i  w a s  ob ta inab le  commercially i n  only benzene o r  

o t h e r  hydrocarbons, t h e  r e s u l t i n g  s o l u t i o n  was a very  poor conductor.  

Only a t h i n ,  b l ack  f i l m  w a s  ob ta ined  a f t e r  an hour of e l ec$ ro lys i s  a t  

1 mA/cm . 2 

3.1.2 BERYLLIUM CHLORIDE ETHERATE SOLUTION 

For comparative purposes, t h e  BeC12.2Et 0 e t h e r  s o l u t i o n  was e l e c t r o -  

lyzed t o  observe t h e  na tu re  of t h e  d e p o s i t .  A t  a c u r r e n t  dens i ty  of 

6 mA/cm (copper cathode, be ry l l i um anode, 6.4 mm spacing),  a c e l l  

v o l t a g e  o f  40V w a s  r equ i r ed .  A f t e r  t h r e e  hours t h e  vo l t age  r equ i r ed  had 

r i s e n  t o  74V. Gassing was observed a t  both t h e  cathode and anode. The 

Be depos i t  ob ta ined  w a s  i n  t h e  form of a t h i n ,  b l ack ,  powdery f i l m w h i c h  

2 

2 

could e a s i l y  be wiped o f f .  

3 . 2  ELECTRODEPOSITION OF ALUMINUM ALLOYS 

3.2.1 BERYLLIUM-ALUMINUM ALLOYS 

3.2.1.1 Beryllium Chloride Etherate-Lithium Aluminum Hydride So lu t ion  

I n  an a t tempt  t o  improve t h e  e l e c t r o d e p o s i t  from t h e  B e C l  e t h e r a t e  

s o l u t i o n ,  L i A l H  - e t h e r  s o l u t i o n  (1 .7M)  w a s  added i n  inc reas ing  amounts. 

Any p r e c i p i t a t e  which formed w a s  removed by f i l t r a t i o n  and t h e  r e s u l t i n g  

s o l u t i o n  e l e c t r o l y z e d  a t  6 t o  10 mA/ cm . (BeC12:LiA1H mole r a t i e 0 . 7 6  

t o  30:l.O). 

4 

2 
4 
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A t  low B e C l  :LiAlH mole r a t i o s  (42: l )  much p r e c i p i t a t i o n  occurred,  t h e  

r e s u l t i n g  s o l u t i o n s  w e r e  poor conductors ,  and very  poor e l e c t r o d e p o s i t s  

were obta ined  from t h e s e  s o l u t i o n s .  However, as t h e  r a t i o  increased ,  

good aluminum e l e c t r o d e p o s i t s  were obta ined .  

mole r a t i o  exceeded about 5:1, bery l l ium w a s  codeposi ted w i t h  aluminum 

t o  form a B e - A 1  a l l o y .  A t  h ighe r  r a t i o s ,  t he  amount of bery l l ium i n  the  

e l e c t r o d e p o s i t  became g r e a t e r .  P r e c i p i t a t i o n  of L i C l  d i d  not  occur 

2 4 

When t h e  BeC12:LiA1H4 

I 

when t h e  mole r a t i o  of B e C l  t o  L i A l H  exceeded 30:l .  A l l  of t he  Be-A1 2 4 
a l l o y s  were b r i t t l e  o r  powdery and possessed e s s e n t i a l l y  no s t r u c t u r a l  

s t r e n g t h .  

3.2.1.2 Beryll ium Chloride Etherate-Aluminum P l a t i n g  Solu t ion  

A s  u n s a t i s f a c t o r y  e l e c t r o d e p o s i t s  were obtained from.the B e C l  -LiA1H4 

e t h e r  s o l u t i o n s ,  t h e  L i A l H  

aluminum p l a t i n g  s o l u t i o n  (APS). The composition of t h e  s o l u t i o n  w a s  

3.4614 A1C13 and 0.35M LiA1H4 i n  e t h e r .  

B e C l  e t h e r a t e  s o l u t i o n  i n  inc reas ing  amounts ( B e C 1  :L iAlH mole r a t i o =  

1.5 t o  30:1.0), no p r e c i p i t a t i o n  occurred as i n  the  case of t he  LiAlH - 
e t h e r  s o l u t i o n .  The r e s u l t a n t  s o l u t i o n s  were e l e c t r o l y z e d  a t  6 t o  13 

mA/cm 

2 
was added i n  the  form of t h e  s tandard  

4 

When t h e  APS w a s  added t o  t h e  

2 2 4 

4 

2 (copper cathodes and aluminum anodes) .  

I n  t h e  case of t he  BeC12-LiA1H 

of bery l l ium wi th  aluminum d i d  not occur u n t i l  t h e  mole r a t i o  of 

e l e c t r o d e p o s i t i o n  tests, codepos i t ion  4 

BeC12 t o  LiA1H4 approached 5. I n  t h e  case  of the  BeC12-APS e l e c t r o -  

depos i t i on  tests, codepos i t ion  of bery l l ium d i d  not  occur u n t i l  t he  

mole r a t i o  of BeC1  t o  L i A l H  reached almost 20.  The r e s u l t s  obtained 2 4 
with t h e  L i A l H  i n  t h e  form of t h e  APS with BeC12 were much b e t t e r  4 
than  those  obtained with the L i A l H  -e ther  s o l u t i o n  added a lone  t o  t h e  4 
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B e C l  - e the r  s o l u t i o n .  I n  t h e  p re sen t  case, however, a smooth, coherent  

Be-A1 a l l o y  d e p o s i t  w a s  obtained when t h e  LiA1H4 w a s  added i n  t h e  form 

of t h e  APS wi th  a B e C l  t o  LiAlH mole r a t i o  of about 20 t o  25:l.O 

(@ec1;1! = 1.9M). 

Be  and 97% A l .  

h igher  r a t i o s ,  t h e  depos i t  became powdery. 

2 

2 4 
The e l e c t r o d e p o s i t  i n  t h i s  case contained 2.7% 

A t  lower r a t i o s ,  mainly aluminum w a s  depos i ted .  A t  

3 .2 .2  ZINC-ALUMINUM ALLOYS e 

A s  a r e s u l t  of hydrogen overvol tage ,  z inc  can be r e a d i l y  e l ec t rodepos i t ed  

from aqueous s o l u t i o n s  of i t s  sal ts .  Sinc z i n c  h a l i d e s  are r e l a t i v e l y  

so lub le  i n  e t h y l  e t h e r ,  a t t empt s  were made t o  e l e c t r o d e p o s i t  Zn-A1 

a l l o y s  from va r ious  p l a t i n g  ba ths  prepared by mixing e t h e r e a l  s o l u t i o n s  

wi th  e t h e r  s o l u t i o n s  of several aluminum salts.  

3 .2 .2 .1 Zinc Chloride 

When a ZnC12-ether s o l u t i o n  w a s  added t o  a n  A l C l  - e the r  s o l u t i o n  and 

t h e  r e s u l t i n g  s o l u t i o n  e l ec t ro lyzed ,  a b r i g h t  s i l v e r y  depos i t  was 

obta ined  t h a t  contained only z inc .  Even a t  low concen t r a t ions  of 

ZnC12, only z i n c  was e l ec t rodepos i t ed .  

3 

The next  series of experiments w a s  performed us ing  t h e  aluminum p l a t i n g  

s o l u t i o n  (3.4M A1C13 ,  0.38M LiA1H4) i n s t e a d  of t h e  A1C13-ether 

s o l u t i o n .  A ZnCl -e ther  s o l u t i o n  w a s  added t o  t h e  APS i n  inc reas ing  

amounts (ZnC1; La1H4mole r a t i o =  1.00 t o  2.00:1.00), and t h e  

r e s u l t i n g  s o l u t i o n s  were f i l t e r e d  and then  e l e c t r o l y z e d  a t  6 .8  mA/cm 

(copper cathodes , aluminum anodes) . 

2 

2 
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When t h e  e t h e r e a l  ZnCl s o l u t i o n  w a s  added t o  t h e  APS, a f l o c c u l e n t  

white  p r e c i p i t a t e  w a s  formed which darkened upon s t and ing .  When t h e  

p r e c i p i t a t e  w a s  added t o  water, hydrogen w a s  evolved leaving  mossy 

z i n c  behind.  

formed probably by t h e  fol lowing r e a c t i o n  : (6) 

2 

This  would i n d i c a t e  t h a t  t h e  p r e c i p i t a t e  i s  ZnH2 - 

E t  

LiA1H4+2ZnCl2+ L i C l  .). A1C13+ - 2ZnH 
2 I 

Codeposit ion of any s i g n i f i c a n t  amounts of z i n c  wi th  aluminum occurred 

over a very  l imi t ed  i n i t i a l  mole- ra t io  range of ZnCl 

of z i n c  i n  t h e  e l e c t r o d e p o s i t  were f i r s t  noted a t  a n  i n i t i a l  mole 

r a t i o  of ZnC1' LiAlH of 1.22 t o  1.25: 1.00 a t  a c u r r e n t  d e n s i t y  

of 6 mA/cm . The presence of z i n c  i n  the  d e p o s i t  caused i t  t o  become 

somewhat b r i t t l e .  

t o  A1C13.  Traces  2 

2' 4 2 

A t  a n  i n i t i a l  ZnCl t o  LiAlH mole r a t i o  of about  1.33 t o  1.43:1.00, 

f a i r  amounts of z i n c  were present  i n  t h e  a l l o y  d e p o s i t .  The b e s t  

depos i t  was obta ined  a t  a n  i n i t i a l  mole r a t i o  of ZnCl :LiA1H4 of 

1.45 t o  1.47:l.OO. The depos i t  w a s  s i l v e r y  i n  appearance,  hard ,  bu t  

very b r i t t l e ,  Unfortunately.  The d e p o s i t s  ob ta ined  a t  h igher  c u r r e n t  

d e n s i t i e s  (10 t o  15 mA/cm ) appeared t o  become somewhat powdery 

r e l a t i v e  t o  those obtained a t  lower c u r r e n t  d e n s i t i e s  (4 t o  6 d / c m  ) . 

2 4 

2 

2 

2 

3.2.2.2 Zinc Iodide  

When ZnI - e the r  s o l u t i o n  w a s  used i n s t e a d  of t h e  ZnCl - e the r  s o l u t i o n  

with t h e  APS, p r e c i p i t a t i o n  of ZnH2 w a s  cons iderably  delayed, and t h e  

i n i t i a l  ZnI t o  L i A l H  mole r a t i o  had t o  be reduced t o  a va lue  of 

0.107:l.OO before  aluminum was de tec t ed  i n  t h e  e l e c t r o d e p o s i t .  

2 2 

2 4 
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This  would i n d i c a t e  a very low reduc t ion  p o t e n t i a l  f o r  z inc  under t h e s e  

cond i t ions .  

s o l u t i o n  with the  APS w a s  less s a t i s f a c t o r y  than  t h a t  f o r  the  case 

of t he  ZnCl -e ther  s o l u t i o n  wi th  APS. 

The na tu re  of t h e  Zn-A1 a l l o y  e l e c t r o d e p o s i t  us ing  Zn12-ether 

2 

3.2 .3  MAGNESIUM-ALUMINUM ALLOYS 

Elec t rodepos i t i on  t es t s  were c a r r i e d  out  wi th  e t h y l  magnesium bromide 

(EMB)-ether s o l u t i o n  conta in ing  va r ious  amounts of L i A l H  4 
t h a t  codepos i t ion  of aluminum with magnesium would occur .  

L i A l H  w a s  added i n  t h e  form of L i A l H  - e t h y l  e t h e r  s o l u t i o n  t o  t h e  EM33 

s o l u t i o n  (3.1M, i n  e t h y l  e t h e r ) .  No s a t i s f a c t o r y  combination of 

L i A l H  wi th  EMB was obta ined .  For mixtures  where aluminum w a s  found 

i n  the  e l e c t r o d e p o s i t ,  t h e  conduct iv i ty  of the  r e s u l t i n g  s o l u t i o n s  w a s  

found t o  be very  poor ( L i A l H  EMB mole r a t i o z 0 . 3 8  t o  0.57: l .O).  

Mixtures which were f a i r l y  conductive (LiA1H4: EMB mole r a t i o z 0 . 1 1  

t o  0.33:l.O) produced poor d e p o s i t s  which were powdery, b r i t t l e  (or 

bo th ) ,  o r  s t r e s s e d .  The a d d i t i o n  of L i A l H  t o  t h e  EMB i n  t h e  form of 

t h e  aluminum p l a t i n g  s o l u t i o n  r e s u l t e d  i n  p r e c i p i t a t e  formation.  

i n  hopes 

The 

4 4 

4 

4 :  

4 

3.3 ELECTRODEPOSITION STUDIES 

To complement d a t a  obtained from t h e  e l e c t r o l y t e  scanning s t u d i e s ,  a 

series of e l e c t r o d e p o s i t i o n  tests w e r e  conducted wi th  t h e  APS 

conta in ing  va r ious  a d d i t i v e s .  The a i m  o f  t hese  s t u d i e s  w a s  t o  observe 

whether hardening of t he  aluminum e l e c t r o d e p o s i t  would take  p l ace  with 

t h e  a d d i t i o n  of var ious  amounts of d i f f e r e n t  so lven t s  and sal ts  t o  the  

p l a t i n g  ba th .  To f a c i l i t a t e  t he  t e s t i n g ,  s m a l l  test cells  were 
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cons t ruc t ed  from small, commercially a v a i l a b l e  b o t t l e s .  F igure  1 i s  a 

diagram of t h e  tes t  ce l l .  The volume of s o l u t i o n  used f o r  each test  
3 2 w a s  50 t o  60 cm . To d e f i n e  t h e  p l a t i n g  area (6.05 c m  ) ,  t h e  upper 

p o r t i o n s  of t h e  e l e c t r o d e s  were covered wi th  hea t - sh r inkab le  TFE t ub ing .  

The glove box w a s  employed f o r  prepar ing  t h e  v a r i o u s  s o l u t i o n s  and f o r  

f i l l i n g  t h e  test ce l l s .  

e 

A f t e r  t h e  f i l l e d  ce l l s  were removed from the  glove box, they were 

placed i n  a ho lde r  s o  t h a t  10 test  c e l l s  could be run  simultaneously 

(provid ing  t h e  power supply c a p a b i l i t y  w a s  no t  exceeded). The ce l l s  

were then  connected i n  series t o  a cons t an t  c u r r e n t  supply and t h e  

t o t a l  c u r r e n t  d e n s i t y  w a s  ad jus t ed  t o  approximately 2 2  mA/cm . 
usual  e l e c t r o l y s i s  t i m e  w a s  about 22 hours  s o  t h a t  an  average e l e c t r o -  

d e p o s i t  t h i ckness  of  0 .28  nun t o  0.38 mm (11 m i l s  t o  15 m i l s )  was 

obta ined .  

tests as a c o n t r o l .  

a f t e r  each run  t o  determine the  approximate c u r r e n t  e f f i c i e n c y .  

A f t e r  each run, t h e  e l e c t r o d e p o s i t s  were a l s o  examined under t h e  micro- 

scope f o r  g r a i n  s t r u c t u r e  d i f f e r e n c e s .  

2 
The 

A c e l l  con ta in ing  only APS was included i n  each series of 

The cathodes were u s u a l l y  weighed before  and 

3 . 3 . 1  INERT ORGANIC SOLVENT ADDITIVES 

High concen t r a t ions  of xylene (20% by volume) caused no hardening of t h e  

e l e c t r o d e p o s i t  when added t o  the  APS but  d id  cause a n  i n c r e a s e  i n  

smoothness. A t  h igh  concen t r a t ions  of i sopropyl  e t h e r  and n-butyl 

e t h e r  (about 30% by volume), f a i r  hardening of t h e  depos i t  w a s  noted. 

Reduction i n  c u r r e n t  e f f i c i e n c y  a l s o  w a s  noted. S imi la r  r e s u l t s  were 

noted wi th  b i s  (2-butoxyethyl) e t h e r ,  bu t  a t  only 15% by volume. B i s  

(2-methoxyethyl) e t h e r  w a s  incompatible with t h e  APS, forming a wh i t e  

p r e c i p i t a t e .  
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3.3.2 INERT SALT ADDITIVES 

A number of anhydrous i n e r t  sa l t  a d d i t i v e s  were examined as poss ib l e  

a d d i t i v e s  t o  t h e  APS. 

e f f e c t  upon the  aluminum e l e c t r o d e p o s i t  when added t o  t h e  APS a t  a 

The sal t  a d d i t i v e s  which showed l i t t l e  o r  no 

concen t r a t ion  of 0.1M were: potassium ch lo r ide ,  ammonium ch lo r ide ,  

l i t h i u m  ch lo r ide ,  l i t h i u m  iod ide ,  magnesium c h l o r i d e ,  boron f l u o r i d e ,  

aluminum isopropoxide,  sodium acetate, potassium acetate, bery l l ium 

acetate, bery l l ium ch lo r ide ,  copper(I1) c h l o r i d e ,  copper(1) bromide, 

and copper ( I) cyanide.  

A t  a concent ra t ion  of B e C 1 2  of 1 . 3  t o  1.9M i n  the  APS, a s l i g h t l y  b r i t t l e  

bu t  h r d e n e d  Be-A1 e l e c t r o d e p o s i t  w a s  obtained.  The copper salts s tud ied  

were apparent ly  reduced by t h e  hydride of t h e  APS t o  copper m e t a l  

sponge. 

S a l t s  which caused a marked d e t e r i o r a t i o n  ( e .g . ,  embri t t lement)  o f  

t h e  aluminum e l e c t r o d e p o s i t  t o  occur when added t o  the  APS a t  a 

concen t r a t ion  of 0.1M were: l i t h i u m  pe rch lo ra t e ,  magnesium pe rch lo ra t e ,  

potassium th iocyanate ,  ammonium th iocyanate ,  chromium(II1) ch lo r ide ,  

i r o n ( I I 1 )  ch lo r ide ,  and titanium(1V) c h l o r i d e .  Titanium w a s  de t ec t ed  i n  

t h e  depos i t  from t h e  APS conta in ing  0.05M t o  0.10M T i C l  The depos i t  

exh ib i t ed  increased  r e s i s t a n c e  t o  a t t a c k  by concentrated HC1 over t h a t  

of pure aluminum. 

4 '  

S a l t s  which were in so lub le  i n  t h e  APS a f t e r  f i f t e e n  minutes of s t i r r i n g  

were: disodium maleate, sodium formate,  disodium hydrogen phosphate, 

potassium cyanide,  l i t h i u m  aluminate ,  manganese(I1) ch lo r ide ,  manganese(I1) 

bromide, c o b a l t ( I I 1 )  f l u o r i d e  , and tin(1V) c h l o r i d e  ( p r e c i p i t a t e  formation) . 
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3 .3 .2 .1  Acety lace tona te  S a l t  Addi t ives  

A number of a c e t y l a c e t o n a t e  sa l t  compounds were i n v e s t i g a t e d  as 

poss ib l e  hardening a d d i t i v e s  t o  t h e  APS. 

pounds of t h e  fol lowing elements were s tud ied :  

beryl l ium, aluminum, uranium, zirconium, n i c k e l ,  chromium, manganese, 

copper, vanadium, molybdenum, and t i t an ium.  A t  concen t r a t ion  of 0.05M 

i n  t h e  APS, a l l  of t h e  a c e t y l a c e t o n a t e s ,  except  f o r  t h e  case of t i t a n y l  

ace ty l ace tona te ,  caused a marked d e t e r i o r a t i o n  of t h e  e l e c t r o d e p o s i t .  

I n  most cases, t h e  depos i t  b e c a m e , b r i t t l e  and crumbly, and peeled 

from t h e  cathode. 

d e p o s i t s  improved bu t  were s t i l l  u n s a t i s f a c t o r y  i n  t h e  ma jo r i ty  of t h e  

cases. 

The a c e t y l a c e t o n a t e  com- 

c o b a l t ,  i r o n ,  magnesium, 

When t h e  concent ra t ion  w a s  reduced t o  0.025M, t h e  

only t h r e e  of t he  a c e t y b c e t o n a t e s  s tud ied  showed any promise as APS 

a d d i t i v e s  - uranyl  a c e t y l a c e t o r a t e ,  chromium(II1) ace ty l ace tona te ,  and 

t i t a n y l  ace ty l ace tona te .  

a d d i t i v e s  were necessary t o  harden t h e  e l e c t r o d e p o s i t  (0.0074M, 0.0011M, 

and 0.04M, r e s p e c t i v e l y  - t h e  lowest optimum a d d i t i v e  concen t r a t ions  

encountered i n  the  e l e c t r o d e p o s i t i o n  s t u d i e s . )  The optimum a d d i t i v e  

concen t r a t ion  ranges,  i n  t hese  cases, w e r e  a l s o  extremely narrow. 

Extremely small concen t r a t ions  of t h e s e  

Of t h e s e  t h r e e  ace ty l ace tona te s ,  t i t a n y l  ace ty l ace tona te  gave t h e  most 

s a t i s f a c t o r y  e l e c t r o d e p o s i t .  

w a s  t h e  l a r g e s t ,  a l s o  (0.025M t o  0.040M). 
case contained traces of t i t an ium,  which made i t  more r e s i s t a n t  t o  

a t t a c k  by concent ra ted  HC1 than pure aluminum. 

I ts  optimum concen t r a t ion  range i n  t h e  APS 

The e l e c t r o d e p o s i t  i n  t h i s  
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3 . 3 . 3  NITROGEN COORDINATIVE ADDITIVES 

By changing t h e  na tu re  of t h e  p l a t a b l e  s o l u t i o n  spec ie s ,  it i s  poss ib l e  

t o  change t h e  n a t u r e  of t h e  e l e c t r o d e p o s i t .  I n  t h e  p re sen t  case, it 

w a s  d e s i r a b l e  t o  modify t h e  aluminum complex i n  s o l u t i o n  i n  such a man- 

ner  as t o  cause a hardening of t h e  r e s u l t i n g  aluminum e l e c t r o d e p o s i t .  

One p o s s i b l e  way t o  modify t h e  canplex i s  by changing t h e  s o l u t i o n  

c h a r a c t e r i s t i c s .  

of t h e  ether a d d i t i v e s , )  t h e  c h a r a c t e r i s t i c s  of t h e  so lven t  coordina-  

t i o n  with t h e  complex are a l s o  changed. 

. 
By changing the  na tu re  of t h e  s o l v e n t  (as i n  t h e  case 

To s tudy  t h e  e f f e c t s  of n i t r o g e n  coord ina t ion  upon the  s o l u t i o n  s p e c i e s  

i n  t h e  APS and upon t h e  r e s u l t i n g  e l e c t r o d e p o s i t ,  va r ious  types  of 

n i t rogen-conta in ing  organic  compounds were i n v e s t i g a t e d  as a d d i t i v e s .  

The s o l u t i o n s  were subjec ted  t o  scanning tests as w e l l  as  p l a t i n g  tests 

i n  t h e  hopes of ob ta in ing  some type of c o r r e l a t i o n  between t h e  n a t u r e  

of  t h e  s o l u t i o n  and i t s  e l e c t r o d e p o s i t .  

3 .3 .3 .1  Amines 

The fol lowing amine a d d i t i v e s  were s tud ied  as APS a d d i t i v e s  ae cmcen-  

t r a t i o n s  af 0.05M t o  0.30M: 2,4-dimethylani l ineJ  phenylhydrazine 

hydrochlor ide,  diphenylamine, t e t r a e t h y l  ammonium chlar5.de, 4-amjinophenyl 

e t h e r ,  hydrazine,  and ethylenediamine.  

Hydrazine and'ethylenediamine could not  be used as a d d i t i v e s  t o  t h e  

APS due t o  immediate p r e c i p i t a t e  formation upon a d d i t i o n ,  whi le  hydrazine 

hydrobromide w a s  i n s o l u b l e  i n  t h e  APS. Tetraethylammonium c h l o r i d e  

caused a cons iderable  so f t en ing  of t h e  e l e c t r o d e p o s i t  a t  a concen t r a t ion  
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c 

of 0.06M. 

ether gave satisfactory results (0.05M to 0.1OM). The majority of the 
other amine additives caused embrittlement as well as hardening of the 

electrodeposit to occur. 

Of all the amines studied as APS additives, only 4-aminophenyl 

3 . 3 . 3 . 2  Amides 

Similar results were obtained with the amide ;compounds% stidied as APS 

additives as with the amine compounds. 

the electrodeposit to be brittle and peeled in the concentration range 

of 0.05M to O.1OM in the APS were acetamide, phenylacetamide, 

acetoacetanilide, and oxanilide. Reduction of  the additive concentration 

did not improve the electrodeposit. 

The amide additives which caused 

Some of the amide additives had little or no effect upon the electro- 
deposit at a concentration of 0.05M to 0.10M (e.g., dimefhyl formamide, 

benzanilide, acetanilide, urea, and phenylurea), while others caused the 

electrodeposit to become somewhat hardened but fairly brittle (e.g., 
benzamide, p-toluamide, and p-aminoacetanilide). Only carbanilide, of 

all the amides studied, produced a satisfactory hardened, but not brittle, 

aluminum electrodeposit (at a concentration of 0.10M in the APS). 

3 . 3 . 3 . 3  Nitriles 

Since the use of aliphatic nitriles as APS additives resulted in non- 
metallic, black electrodeposits (even for the case of 0.13M heptanenitrile), 

the studies were mainly concerned with the aromatic nitriles. The 

aromatic nitriles studied which caused hardening without embrittlement, 

of the aluminum electrodeposit to occur at a concentration of 0.1OM to 
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0.15M i n  t h e  APS were: b e n z o n i t r i l e ,  p - t o l u n i t r i l e ,  m - t o l u n i t r i l e ,  and 

p h t h a l o n i t r i l e .  O f  these ,  b e n z o n i t r i l e ,  m - t o l u n i t r i l e ,  and p - t o l u n i t r i l e  

appeared t o  g ive  t h e  b e s t  r e s u l t s  as n i t r i l e  hardening a d d i t i v e s .  

optimum concent ra t ion  range f o r  t h e  above t h r e e  n i t r i l e  a d d i t i v e s  w a s  

0.15M t o  0.18M i n  t h e  APS. 

The 

I 

Nit r i les  which caused t h e  e l e c t r o d e p o s i t  t o  become hardened but  somewhat 

b r i t t l e  i n  t h e  concent ra t ion  range of 0.10M t o  0.15M i n  t h e  APS were: 

1 -naphtha leneace t  on i  t r i  l e ,  2 -naph thoy lace t o n i  t r i  le ,  t er ephtlia l o n i  t r i  le ,  

p h e n y l a c e t o n i t r i l e ,  pentafluorobenzonitrile, and 4-b iphenylcarboni t r i le .  

However, reduct ion  of t h e  concent ra t ion  of 4-b iphenylcarboni t r i le  t o  

0.05M i n  t h e  APS e l imina ted  t h e  b r i t t l e n e s s  of t h e  e l e c t r o d e p o s i t .  

3.3.3.4 Heterocycl ic  Compounds 

Heterocycl ic  compounds are organic  r i n g  compounds i n  which a n i t r o g e n  

atom h a s  been s u b s t i t u t e d  f o r  a carbon atom. They mag be thought of 

as c y c l i c  amines. Small amounts of pyr id ine  added t o  t h e  APS a t  a 

concent ra t ion  of 0.12M t o  0.15M r e s u l t e d  i n  one of t h e  h a r d e s t  and 

s t r o n g e s t  e l e c t r o d e p o s i t s  of aluminum. 

(>0.23M), however, t h e  depos i t  became q u i t e  b r i t t l e  and weak. 

A t  h igher  concent ra t ions  

The use  of 2-bromopyridine and 2 ,2 ' -b ipyr id ine  as a d d i t i v e s  r e s u l t e d  i n  a 
severe  d e t e r i o r a t i o n  of t h e  e l e c t r o d e p o s i t  a t  concent ra t ions  of 0.24M 

and 0,10M, r e s p e c t i v e l y ,  i n  t h e  APS. 3-Acetylpyridine r e a c t e d  v i o l e n t l y  

wi th  APS, w h i l e  morpholine formed a whi te  p r e c i p i t a t e  wi th  the  APS. 

Quinoline and 8-quinolinol were found t o  be i n s o l u b l e  i n  t h e  APS. 
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3.3.3.5 N i t r o  Compounds 

The r e s u l t s  of t h e  use  of a l i p h a t i c  and aromatic  n i t r o  compounds as 

APS a d d i t i v e s  were not  favorable .  No metallic d e p o s i t s  were obtained 

i n  any of t h e  cases. 

i n  gassing,  h e a t  genera t ion ,  and a h i g h - r e s i s t a n c e  s o l u t i o n  (7) .  The 

a d d i t i o n  of ni t robenzene t o  the  APS caused a delayed r e a c t i o n  t o  occur,  

genera t ing  l a rge  amounts of gas  suddenly through formation of a 

diazonium sa l t ,  probably (8).  

Addit ion of nitromethane t o  t h e  APS r e s u l t e d  

e 

Addit ion of a n i t r o - s u b s t i t u t e d  b e n z o n i t r i l e  t o  t h e  APS prolduced 

r e s u l t s  s i m i l a r  t o  those f o r  ni t robenzene,  even a t  a Concentration as 

low as 0.031M. As a r e s u l t  of t h e i r  r e a c t i v i t y  with t h e  APS, t h e r e f o r e ,  

n i t r o  compounds could not be used as a d d i t i v e s .  

r: * 

3.3.4 OTHER COORDINATIVE ADDITIVES 

3 .3 .4 .1  Esters 

Several  o rganic  and inorganic  esters were examined as p o s s i b l e  hardening 

a d d i t i v e s  t o  t h e  APS. 

noted f o r  t h e  organic  esters e t h y l  acetate and phenyl benzoate a t  

concent ra t ions  of 0.10M t o  0.20M i n  t h e  APS. For t h e  case of t h e  

inorganic  ester, t r i - n - b u t y l  phosphate, t h e  cons iderable  hardening 

of t h e  aluminum e l e c t r o d e p o s i t  w a s  accompanied by severe  embrit t lement 

a t  concent ra t ions  of 0.05M t o  0.10M i n  t h e  APS. 

Only an i n s i g n i f i c a n t  amount of hardening w a s  
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3.3,4.2 Organometallic Compounds 

Concentrations of ferrocene of 0.lM to 0.m in the APS caused considerable 

hardening of the electrodeposit without embrittlement. Rowever, at 

somewhat higher concentrations (30023M), the deposit became brittle, 

No iron was detected in the electrodeposit on a qualitative basis. The 

titanium counterpart of ferrocene, titanocene dichloride, caused 

a severe deterioration of the electrodeposit - even at a concentration 
of 0.02M. 

I 

3.4 SCALE-UP OF HARDENED-ALUMINUM FLAT-PLATE ELECTROFORMING 
- 5.1 x 15 CM SIZE 

Of the several hundred aluminum test baths formulated in the electro- 

depositions studies, about fifteen solutions produced satisfactory, 

nonbrittle, hardened aluminum electrodeposits, Of these, eight test 

solutions were selected for scale-up to about 1.5 1 (from 0.05 By 
so that 5.1 x 15 cm flat-plate samples could be electroformed for 

physical property testing. 

The experimental setup for the 5.1 x 15 cm flat-plate electroforming 

consisted of a large Pyrex tube (7.5 cm in diameter) as the solution 

container, and a large rubber stopper for the lid. The stopper 

contained electrical feed throughs, as support for the electrodes, 

and a small valve to relieve excess gas pressure. The aluminum 

anode was wrapped in TFE woven cloth (to contain the anode slime), 
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and was separated from the cathode by TFE spacers. This arrangement 

ensured rigidity and maintained a constant electrode separation. 

A magnetic stirrer was used to circulate the solution. A current 

density of 15-20 mA/cm was used with copper cathodes and aluminum 

anodes. 

2 

The results of physical testing are presented in Table I, 
physical properties of the regular aluminum electrodeposit from the 

APS (9) and the physical properties of the mixed-ether (anisole- 

ethyl ether) electrodeposit (10) are included for comparison. 

The 

3.4.1 BERYLLIUM CHLORIDE ADDITIVE 

A low-melting bismuth alloy was used as the mandrel material for the 

Be-A1 flat-plate electroforming, since the alloy would not adhere 

to stainless very readily and adhered too strongly to copper. After 

electrodeposition of the alloy, the mandrel was removed by melting, 

leaving the alloy electroform behind. 

An electrode spacing of 13 mm was used, with a bath temperature of 

about 308'K. 
by the solution itself - no external source of cooling was employed. 

The heat generated during electrolysis was absorbed 

The Be-A1 plating solution which was formulated during the electro- 
deposition studies consisted of three volumes of BeC1, etherate and 
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When a 5.1 x 15 c m  sample w a s  e lectroformed 

appeared t o  be q u i t e  b r i t t l e ,  however. The 

from t h i s  s o l u t i o n ,  i t  

B e C l  concen t r a t ion  w a s  2 
then reduced t o  t h e  po in t  where a s a t i s f a c t o r y  e l e c t r o d e p o s i t  w a s  

obtained.  A t  t h i s  p o i n t ,  t he  B e C l  e t h e r a t e  t o  A € S  volume r a t i o  w a s  2 

The 5.1 x 15 c m  f l a t - p l a t e  sample from the  A P S  con ta in ing  1.3M 

B e C l  
- - 2  
No y i e l d  s t r e n g t h  was obta ined ,  a s  t h e  sample ruptured  be fo re  0,2% 

o f f s e t  w a s  obtained.  The sample had a microhardness of 54 KHN and a 

bery l l ium content  of 0,06%. 

possessed an  average u l t ima te  s t r e n g t h  of 110 MN/m2 (16,000 p s i ) ,  

3 4.2 TITANYL ACETYLACETONATE 

The f i r s t  t i m e  t h e  APS conta in ing  t i t a n y l  ace ty l ace tona te  was e l e c t r o l y z e d ,  

a brown scum formed on the  wal l s  of the  t es t  c e l l  and on t h e  anode TFE 

bagging. This  d i d  not  occur dur ing  subsequent r u n s ,  so  t h a t  some 

a d d i t i o n a l  e lec t rochemica l  r e a c t i o n  o the r  than metal depos i t i on  

must take  p l ace  i n i t i a l l y  f o r  only a s h o r t  per iod  of t i m e .  

Some d i f f i c u l t y  w a s  encountered i n  the  pre l iminary  e lec t roforming  runs  

us ing  0.03M t o  0.04M TiO(AcAc)2 i n  the  APS. A l a r g e  e l e c t r o d e  spac ing  

o f  25 mm w a s  used a t  f i r s t  t o  minimize t ape r ing  tendencies  and t o  a l low 

the  s o l u t i o n  t o  c i r c u l a t e  more r e a d i l y  between t h e  e l ec t rodes  dur ing  

s t i r r i n g  t o  minimize any concent ra t ion  grandients .  However, a t  t h i s  

s epa ra t ion ,  a l a r g e  I R  drop r e s u l t e d  i n  the  s o l u t i o n  caus ing  i t  t o  

become q u i t e  w a r m  ( ~ 3 2 3  K ) ,  which r e s u l t e d  i n  a cons iderable  amount of 

sponge formation a f t e r  a per iod of t i m e .  A t  t he  increased  s o l u t i o n  temp- 

e r a t u r e ,  t he  anodic d i s s o l u t i o n  of aluminum w a s  reduced as evidenced 

by cons iderable  gass ing  a t  t h e  anode dur ing  e l e c t r o l y s i s ,  

0 
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b. 

After removal of sponge, a Chin flat-plate was obtained for physical 

testing, It possessed a yield strength (0,2% offset) of 91,O 
2 2 MN/m 

(14,800 psi), and a hardness of 56 KHN. 
analysis of an electrodeposit from the APS containing TiO(AcAc) are 

presented in Table 11. The analysis for a typical soft aluminum 

electrodeposit is included for comparison. As can be seen, only a very 

small amount of titanium was present (0.10%), with copper-being the 

largest minor constituent (0.16%), 

(13,200 psi), an average ultimate strength of 105 MN{m 

The results of the spectrographic 

2 

The above figures are not to be taken as final, since the electrodeposit 

which was tested was not representative of the APS-T~O(ACAC)~ system. 

It was subsequently discovered that control of the solution temperature 
was important for obtaining a satisfactory hardened deposit without 

sponge formation. 

A small portion of the same solution which produced a spongy deposit in 

the large test cell (1.5 1 volume) was electrolyzed in the’small 
test cell (0.050 1 volume) used for the electrodeposition studyo In 
this case, the electrode spacing was only 6.4 nun, and a thick, coherent, 
and hardened plate was now obtained, 

used, the electrode spacing played a major role - along with electrode 
polarization, solution conductivity, and the current density - in 
determining the resultant equilibrium solution temperature. The solution 

temperature in the case of the smallest cell was much less than that 
for the large test cell, and the electrodeposit was considerable improved 

as a result. 

When no external cooling was 

7248-Final 28 



TABLE I1 
SPECTROGRAPHIC ANALYSIS OF REGULAR AND HARDENED ALUMINUM 

ELE CTRO DEPO S I TS 

Element 

Copper 

I r o n  

Magnesium 

S i 1 icon 

Zinc 

Mangane s e 

T i t  a n i  um 

Chromium 

Nickel 

A1  uminum 

ardened A1  Regular A 1  
APS+O.OM TiOCAcAc (APS) 

7 

0.16% 

0 09% 

N i l  

0 06% 

0 -07% 

0 0 01% 

0 0 10% 

N i l  

N i l  

Rem. = 99.51% 
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0 00018% 

0.002% 
rn 

0.0012% 

0.008% 

N i l  

0.011% 

N i l  

N i l  

N i l  

Rem. = 99.96% 



' 

Several test plates which were subsequently electoformed in the large 

test cell, at a reduced electrode spacing of 6.5 mm instead of the 

previous 25 mm, now produced coherent, thicker deposits without 

accompanying sponge formation. (See Section 3,5 test results for 

10 x 15 cm electroformed flat-plates). 

3.4.3 CARBANILIDE ADDITIVE 

I 

The carbanilide additive was the only amide additive tested which 

produced a satisfactory hardened aluminum deposit when added to the 

APS. The APS containing 0.114M carbanilide (26 mm electrode spacing) 

produced an electrodeposit (5.1 x 15 cm) with an average yeild strength 

of 103 MN/m 

(16,500 psi), and a hardness of 45 KNH. 
the softest electrodeposit of all of the hardened aluminum plating baths 

formulated. 

2 2 (15,000 psi), an average ultimate strength of 114 MN/m 

The APS-carbanilide bath produced 

3.4.4 BIS (2-BUTOXYETHYL) ETHER ADDITIVE 

The physical properties of the electrodeposit from the APS containing the 
aliphatic ether additive, bis (2-butoxyethyl) ether, were not as great as 
those of the deposit from the APS containing'the aromatic ether additive 

anisole. The 5.1 x 15 cm flat-plate electroform from the APS containing 
17% by volume of bis (2-butoxyethyl) ether, possessed an average yield 

strength (0.2% offset) of 108 MN/m 

strength of 128 MNdm 

2 (15,700 psi), an average ultimate 
2 (18,600 psi), and a hardness of 64 KHN. 
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Since a 25 mm electrode spacing was used, the solution became fairly 

warm (IR heating), At a lower solution temperature (smaller electrode 
spacing), somewhat better results would have been obtained. 

3.4.5 BENZONITRILE ADDITIVE 

The electrodeposit from the APS containing the aromatic nitrile, 

benzonitrile (Oe175M), was slightly stronger than thaf from the APS 

containing 17% bis (2-butoxyethyl) ether. The benzonitrile-APS system 

produced an electrodeposit with an average yield strength (0.2% offset) 

of 113 MN/m 

(18,900 psi), and a hardness of 56 KHN. 

2 2 (16,400 psi), an average ultimate strength of 130 MN/m 

0 

3.4.6 FERROCENE ADDITIVE 

The electrodeposit from the APS containing 0.188M ferrocene (25 mm 

electrode spacing) had an average yield strength (0.2% offset) of 
2 116 MN/m2 (16,800 psi), an average ultimate strength of 148 MN/m 

(21,500 psi), and a hardness of 70 KHN. 

hardest aluminum deposit encountered in the electroforming scale-up 

studies 

This depos,$t was the second 

3.4,7 OXYDIANILINE (4-AMINOPHENYL ETHER) ADDITIVE 

The electrodeposit from the APS containing 0.089M oxydianiline 
(25 mm electrode spacing) was the second strnngest deposit encoun- 

tered in the series. 

of 146 MN/m and a hardness of 61 KHN. 

It had an average yield strength (0.2% offset) 
2 
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3.4.8 PYRIDINE ADDITIVE 

The a d d i t i o n  of py r id ine  t o  t h e  APS a t  a concent ra t ion  o f  0.125M 

r e s u l t e d  i n  a ba th  which produced t h e  ha rdes t  and s t r o n g e s t  aluminum 

of a l l  t he  va r ious  ba ths  examined during t h e  f l a t - p l a t e  (5-1 x 15 cm) 

e lec t roforming  s t u d i e s  (13 mm e l e c t r o d e  spacing) .  It had an  average 

y i e l d  s t r e n g t h  (0,2% o f f s e t )  of 198 MN/m 

u l t ima te  s t r e n g t h  of 222 MN/m 

2 
(28,700 p s i ) ,  an average 

2 
(32,200 p s i ) ,  and a hardngss of 88 KHN. 

This  depos i t  was f a r  supe r io r  i n  every way than  t h e  b e s t  previous depos i t  

obtained - t h a t  from the;mixed..-ether (an iso le-e thyl  e t h e r )  bath.  

3.5 10 x 15 CM FLAT-PLATE AND HOLLOW-CORE ELECTROFORMS 

Of the  e i g h t  hardened aluminum p l a t i n g  s o l u t i o n s  s t u d i e s  i n  t h e  p repa ra t ion  

of 5.1 x 15 c m  f l a t - p l a t e s  ( for  phys ica l  p roper ty  measurements), t h r e e  

w e r e  chosen f o r  f u r t h e r  sca le -up  t o  prepare  10 x 15 c m  f l a t - p l a t e s  and 

hollow-core samples. The t h r e e  were the  APS-TiO(AcAc) APS-BeC12, 

and APS-pyridine baths .  

shown i n  F igure  2. 

apparatus  used f o r  t h e  5.1 x 15 c m  s i z e  samples i n  t h a t  t h e r e  w e r e  
p rovis ions  f o r  f i l t e r i n g ,  c i r c u l a t i o n ,  and cool ing  the  so lu t ion .  Thus, 

one could more e a s i l y  c o n t r o l  t he  temperature of  t h e  ba th ,  and thereby,  

the  g r a i n  s i z e  of t he  depos i t .  

2 '  
The p l a t i n g  apparatus  which w a s  used i s  

This  appara tus  had s e v e r a l  advantages over t h e  p l a t i n g  

3 5.1 TITANYL' ACETYLACETONATE ADDITIVE 

Two hollow-core samples (10 cm x 15 cm) and t w o , f l a t - p l a t e  samples 

(12.5 x 15 cm) w e r e  e lectroformed from t h e  A P S  conta in ing  0.03-0.04M 

of the  TiO(AcAc)2 a d d i t i v e .  
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Figure 2. Aluminum E l e c t r o p l a t i n g  Apparatus for 
10 x 15 cm Electroforms 
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The first samples were found to be slightly rough where the solution 

entered the tank and impinged on the mandrel during circulation. However, 

this was eliminated through the use of a deflection plate mounted on the 

mandrel. A current density of approximately 1 6  mA/cm produced an 

electrodeposit with an unusually fine grain size when the temperature 

was maintained between 293'K and 298'K during the plating process 

2 

A sample for physical testing was obtained froma wide edge of the hollow- 

core sample. The sample possessed an average yield strength (0.2% offset) 
2 2 of 99 MN/m (14,400 psi), an average ultimate strength of 120 NN/m 

(17,400 psi), and a hardness of 74.5 KHN. 

representative,of the APS-TiO(AcAc)2 bath than the sample of Section 3.4,2. 

This sample is more 

The results of a spectrographic analysis of the above samples are given 

in Table 111. The large amount of copper formerly present was absent, 

and the iron and zinc contents were considerably reduced. While a 
slight reduction in titanium content occurred (from 0.10% to 0.07%), 

an increase in chromium and nickel content also occurred. The overall 

purity of the aluminum deposit increased from 99.51% to 99.81%. 

A photomicrograph of the above deposit is presented in Figure 3. A 

photomicrograph of an aluminum electrodeposit from the mixed ether 

(anisole-ethyl ether) bath is included for comparison (Figure 4). 

3.5.2 BERYLLIUM CHLORIDE ADDITIVE 

Two hollow-core samples (10 x 14 cm) and two flat-plate samples 
(12.5 x 15 cm) were electroformed from the APS containing 1.25M 

BeCl etherate (50% by volume). The mandrels were fabricated out 

of a low-melting tin-bismuth alloy which was easily removed afterwards 
by melting. 

2 
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TABLE I11 

SPECTROGRAPHIC ANALYSIS OF HOLLOW-CORE 

ELECTRODEPOSIT FROM APS CONTAINING 0.03M 

TiO(AcAc) 

Element 

Copper 

Iron 

Magnesium 

Silicon 

Zinc 

Manganese 

Titanium 

Chromium 

Nickel 

Aluminum 

7248-Final 

Content 

Ni 1 

0.02$ 

Ni 1 

0 .OS$ 

0 .OS$ 

0 .Ol$ 

0.07% 

0 .Ol$ 

0 . O O l $  

Rem. Z 99.81$ 
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Figure 3. Aluminum Deposit from APS Containing 0.03M 
Ti0 (AcAc)~ (Keller Etch, 250X) 
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Figure  4 .  Aluminum Elec t rodepos i t  from Mixed Ether  Bath 
(Kel le r  Etch,  250X) 
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2 A t  a c u r r e n t  d e n s i t y  of  16 mA/cm 

t o  298 K, an  e l e c t r o d e p o s i t  was obta ined  which had a rough t e x t u r e  

and loosely-packed c r y s t a l  arrangement. A photomicrograph of t h e  

depos i t  (Figure 5) showed some voids .  

and a s o l u t i o n  temperature o f  293’ 
0 

The f l a t - p l a t e  sample possessed an average y i e l d  s t r e n g t h  (0.2% o f f s e t )  

o f  84 MN/m 

(14,800 p s i ) ,  and a hardness  o f  62.5 KHN. 
s i z e  f l a t - p l a t e  (Table I) ,  the  e longa t ion  and hardness  of t h e  sample 

had increased  - from 0 t o  4% and 54 KHN t o  62.5 KHN, r e s p e c t i v e l y .  

The u l t ima te  s t r e n g t h  d i d  d o t  change s u b s t a n t i a l l y .  

2 2 (12,200 p s i ) ,  an  average u l t ima te  s t r e n g t h  of 102 MN/m 

Re la t ive  t o  t h e l 5 . 1  x 15 c m  

The r e s u l t s  of a spec t rographic  a n a l y s i s  of t he  f l a t - p l a t e  sample 

(12.5 x 15 cm) are presented  i n  Table I V .  

t he  5.1 x 15 c m  f l a t - p l a t e  w a s  0.04% (Sect ion 3 . 4 . 1 ) ,  bu t  f o r  t he  case 

of the l a r g e  f l a t - p l a t e ,  i t  was n i l .  This  most l i k e l y  i s  a r e s u l t  of the  

lower s o l u t i o n  temperature dur ing  the  p l a t i n g  process  f o r  t h e  la t ter  

case .  

3.5 3 PYRIDINE ADDITIVE 
Two hollow-core samples (10 cm x 15 cm) and two f l a t - p l a t e  samples 

(13 c m  x 15 cm) were electroformed from the  APS conta in ing  0.098M 

of the pyr id ine  a d d i t i v e  a t  a s o l u t i o n  temperature of 295’K and 

14mA/cm2 cu r ren t  dens i ty .  The f i r s t  f l a t - p l a t e  t h a t  w a s  e lectroformed 

w a s  very  hard but  s t r e s s e d  enough t o  cause the  depos i t  t o  p u l l  away 

from t h e  mandrel, r e s u l t i n g  i n  a somewhat deformed p l a t e .  Addit ion 

of a s m a l l  amount of L i A l H  

t h i s  problem. 

The bery l l ium content  of 

(an inc rease  of 0.02M) a l l e v i a t e d  4 
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Figure 5 .  Aluminum Deposit from APS Containing 1.25M 
BeC12 (Keller Etch, 250X) 
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TABLE I V  

SPECTROGRAPHIC ANALYSIS OF FLAT-PLATE (12.5 x 15 CM) ELECTRODEPOSIT 

FROM APS CONTAINING 1.25M B e C I Z  

Element Content 

Copper 

I r o n  

Magnesium 

S i  1 icon 

Zinc 

Mangane s e 

T i  t anium 

Chromium 

Beryllium 

Aluminum 

N i l  

0 01% # 

N i l  

0.03% 

0.03% 

0.01% 

0.02% 

N i l  

N i l  

Rem. = 99.90% 
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A photomicrograph o f  t h e  r e s u l t a n t  f l a t - p l a t e  aluminum e l e c t r o d e p o s i t  

i s  presented  i n  F igu re  6 .  The g r a i n  s i z e  w a s  exceedingly s m a l l .  

The f l a t - p l a t e  sample was found t o  have a n  average y i e l d  s t r e n g t h  

(0.2% o f f s e t )  of  203 MN/m2 (29 ,400  p s i ) ,  a n  average u l t i m a t e  s t r e n g t h  

of 240 MN/m (34 ,700  p s i ) ,  and a hardness  of 95.0 KHN. The r e s u l t s  i n  

t h e  p re sen t  case  were somewhat b e t t e r  than  t h a t  f o r  t h e  case of t h e  

5.1 x 15 c m  f l a t - p l a t e  (Sec t ion  3.4 .8) .  A spec t rographic  a n a l y s i s  

of t h e  f l a t - p l a t e  sample (Table V) showed t h e  aluminum t o  be 99,90% 

pure. 

2 

I 

3.6 ELECTROLYTE SCANNING STUDIES 

A l a r g e  number of test  aluminum p l a t i n g  ba ths  were subjec ted  t o  e l e c t r o -  

chemical examination a t  t h e  molecular l e v e l  us ing  a v o l t a m e t r i c  scanning 

technique employing a t r i a n g u l a r  waveform. @fixed-solvent systems 

mixed-sal t  systems were s tud ied  wi th  t h i s  technique.  The o b j e c t i v e  

of t h i s  s tudy  was t o  screen  candida te  aluminum-alloy and/or hardened, 

aluminum ba ths  which would produce e l e c t r o d e p o s i t s  with cons iderably  

improved phys ica l  p r o p e r t i e s  over those from t h e  r egu la r  APS. The 

r e s u l t s  of t h i s  s tudy  are presented i n  t h e  Appendix. 

and 

3.7.1 ADDITIVES TO ALUMINUM PLATING SOLUTIONS 

As a r e s u l t  of t e s t s  to d a t e ,  i t  appears  t h a t  t he re  are several types 

of inorganic  and organic  compounds t h a t  can be used as a d d i t i v e s  t o  

t h e  APS t o  harden t h e  aluminum e l e c t r o d e p o s i t .  Each hardening a d d i t i v e  
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Figure 6. Aluminum Deposit from APS Containing 0.098M 
Pyridine (Keller Etch, 250X) 
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TABLE V 

SPECTROGRAPHIC ANALYSIS OF ALUMINUM FLAT-PLATE (12,5 x 15  CM) 
ELECTRODEPOSIT FROM APS CONTAINING 0.098M 

PYRIDINE 

Element 

Copper 

I r o n  

Magnesium 

S i l i c o n  

Zinc 

Manganese 

T i t  a n i  um 

Chromium 

Beryl 1 ium 

A 1 umi num 

Content 

a 
N i l  

0.02% 

N i l  

0 04% 

0.03% 

N i  1 

0.01% 

N i l  

N i l  

Rem. = 99.90% 
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9 

appeared to have somewhat narrow, optimum concentration range in 

the APS for effective hardening. Below this range, only a slight 

hardening occurred; above this range, the deposit tended to become 

brittle and weak. 

A much lower concentration of the nitrogen-coordination additives 

(e.go, nitriles, heterocyclics, amides and amines) were required, 

relative to the ether (oxygen-coordination) additives for comparable 

(or better) hardening, 

was approximately 0.080-0.12M for the nitrogen-coordination additives, 

while 1-2M for the ether additives. 

The optimum-hardening concentratfon range 

However, because of the narrow concentration range for optimum 

hardening, the addition of nitrogen-coordination additives to the 

APS required more precision than in the case of the ether additives. 

Of all the inorganic compound additive studies, only several of the 

acetylacetonates were effective hardening agents. 

acetylacetonate additive required the lowest concentration of all the 

additives examined (0.03-0.04M) for a satisfactory hardened aluminum 

deposit. 

The titanyl 

The nature of the coordination with the aluminum complex of the APS 
is slightly different for each of the various hardening additives. 

The degree of coordination in the case of the organic additives 

is affected by the availability of the free electron pair(s) of the 

coordinative nitrogen or oxygen of the additive compound. 

of the inorganic salt additives, the aluminum solution complex is 

substantially modified, in many instances. 

In the case 

3 . 7 . 2  HARDENED-ALUMINUM FLAT-PLATE ELECTROFORMS 

The eight hardened-aluminum test baths which were scaled up in volume from 

0.054to 1.5gproduced 5.1 x 15 cm electroforms which varied in 
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2 average ultimate strength from 105 MN/m 
240 MN/m2 (34,700 psi) and which varied in hardness from 45 KHN to 
95 KHN. The pyridine additive produced both the strongest and hardest 

aluminum deposit all the additives tested. The deposit in this case 

was far superior in every way than the deposit from the mixed-ether 

bath, which is approximately 3M in anisole. The oyxdianiline additive 

produced a deposit which was comparable to the latter deposit - but 
at a much reduced additive concentration (0.09M). 

(14,800 psi) to as high as 

a 

The harder and stronger aluminum electrodeposit were characterized by 

a very fine grain size, which was generally obtained when the solution 

temperature was maintained between 288 K and 298 K during electrolysis, 
At too low a solution temperature (e.g., 273 K), salt precipitation from 

solution could occur:. If the solution temperature became too great 
c(e.g., 333OK), on the other hand, the grain size of the electrodeposit 

usually increased, with a subsequent reduction in strength. 

control was most importantfor t the APS-TiO(AcAc)2 system. 

temperature of 295 K, a very satisfactory hardened electrodeposit resulted; 
at a iolution temperature of 323 K, however, excessive sponge formation 
was observed. 

0 0 

0 

Temperature 
At a solution 

0 

0 

Equally satisfactory results were obtained at current 

from 11-22 mA/cm . At 22 mA/cm , for example, the aluminum was deposited 
at approximately 0.025 mm/hr (1 millhr). 

deneities ranging 
2 2 
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APPENDIX A 

ELECTROLYTE SCANNING STUDIES 

A. 1 EXPERIMENTAL 

A commercially a v a i l a b l e  func t ion  gene ra to r  w i th  a frequency range of 

0.0015 Hz t o  1 MHz was used t o  supply t h e  t r i a n g u l a r  waveform. The 

func t ion  genera tor  had a s h o r t  c i r c u i t  ou tput  c a p a b i l i t y  of + 100 mA 

and an ou tpu t  c a p a b i l i t y  of up t o  32V p-p i n t o  a 50-ohm'load. 

genera tor  could a l s o  supply square  waves, s i n e  waves, and ramp func t ions  

wi th  t h e  same frequency range as the  t r i a n g u l a r  waveform, and w i t h  

similar output  c a p a b i l i t y .  F igure  1 A i s  a schematic of t h e  scanning 

appara tus  used i n  t h e  ear l ie r  s t u d i e s .  I n  t h e  l a te r  s t u d i e s ,  t h e  

e m i t t e r - f o l l o w e r  output  s t a g e  (Q ) w a s  rep laced  by a power supply 

which w a s  modulated by t h e  i n p u t  waveform. 

a + -  

The 

1 

The power supply  w a s  capable of being modulated over a l a r g e  frequency 

range (from dc up t o  over 1 kHz) with an  output  c a p a b i l i t y  of up t o  

60V a t  500 mA. However, i n  t h e  p re sen t  s tudy ,  t h e  maximum p o t e n t i a l  

app l i ed  t o  t h e  c e l l  was on ly  5V, which gave q u i t e  s a t i s f a c t o r y  r e s u l t s .  

A t  much h ighe r  app l i ed  vo l t ages  ( A l O V ) ,  no t i ceab le  s o l u t i o n  decomposition 

began t o  occur ( i .e . ,  o rgan ic  r educ t ion  processes) .  

w a s  used t o  record  the d a t a .  

An x-y r eco rde r  

A l l  of the  e l e c t r o l y t e  scanning experiments were conducted i n  t h e  glove 

box t o  minimize contamination of t he  t es t  so lu t ions .  The tes t  c e l l  

contained a l l - p l a t i n u m  e l e c t r o d e  system. The counter  e l e c t r o d e  (anode) 
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w a s  a c o i l e d  shee t  of platinum gauze. 

cons i s t ed  of a square  p l a t e  of 0.25 mm platinum (about 2 . 8  c m  

i n  area) which w a s  spot-welded t o  a platinum lead .  I n  the  l a t t e r  p o r t i o n  

of t h e  s t u d i e s ,  t h e  platinum-square working e l e c t r o d e  w a s  rep laced  by 

a platinum w i r e  e l e c t r o d e  (0.069 cm 

microe lec t rode  appeared t o  g ive  somewhat sha rpe r  i n c i s i o n s  a t  t h e  

r educ t ion  p o t e n t i a l  measured by t h e  use of d e r i v a t i v e  polarography 

(dV/dt-V) p l o t s .  

pos i t i oned  so t h a t  t h e  t i p  w a s  less than  1 mm from the  working e l ec t rode .  

The e l e c t r o d e s  were conta ined  i n  a c y l i n d r i c a l  g l a s s  c e l l  w i th  a t i g h t -  

f i t t i n g  TFE cover wi th  p rov i s ions  f o r  t h e  platinum leads  t o  t h e  e l e c t r o d e s .  

The l e a d s  t o  the  r e fe rence  and working e l e c t r o d e s  w e r e  enclosed w i t h i n  

The working e l e c t r o d e  (cathode) 
2 

2 area). The much smaller platinum 

The quas i - re ference  e l e c t r o d e  w a s  a platinum w i r e  

c a p i l l a r y  tub ing  wi th  TFE caps a t  t h e  ends immersed i n  t h e  tes t  s o l u t i o n .  

S ince  t h e  s t u d i e s  were conducted using an  x-y r eco rde r  t o  record  t h e  

va r ious  d a t a ,  a frequency of 0.05 Hz w a s  chosen as t o  be compatible 

wi th  t h e  r eco rde r  pen response.  The same p o t e n t i a l  range w a s  scanned 

f o r  each s o l u t i o n  under test - 0 t o  5 V  (1 V/sec). 

ob ta ined  from s i n g l e  sweep measurements, by t r i g g e r i n g  t h e  func t ion  

genera tor  f o r  on ly  one c y c l e ,  so as to avoid l a r g e  changes i n  c e l l  

c h a r a c t e r i s t i c s  which could occur dur ing  a continuous sweep process 

(e.g. ,  excess ive  e l e c t r o d e  p o l a r i z a t i o n ) .  

A l l  t h e  d a t a  w e r e  

It w a s  found t h a t  i f  t h e  working e l e c t r o d e  w a s  no t  c leaned  a f t e r  each 

scan i n  which aluminum w a s  depos i t ed ,  t h e  subsequent scan  w a s  n o t  

accura te .  When success ive  scans were run  on t h e  same s o l u t i o n ,  t h e  

o r i g i n a l l y  sha rp  i n c i s i o n s  became q u i t e  weak and rounded, and sometimes 

disappeared a l t o g e t h e r .  However, i f  a c l ean  working e l e c t r o d e  s u r f a c e  

w a s  used f o r  each scan ,  t h i s  d i d  n o t  occur ,  a l though t h e  measured 

- 
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reduction potentials were not exactly the same for each run on an indi- 

vidual test solution. The experimental error was relatively higher 

in the present study (5 to 10% in many cases) - especially in the 
measurement of the low-valued reduction potentials. Regardless of 

the experimental error in this case, the results obtained were still 

quantitative enough for the desired purpose of distinguishing the 

nature of the electrochemical solution processes. 
1) 

A.2 DERIVATIVE POLAROGRAPHY 

In addition to voltage-current (V-I) and voltage-time (V-t) curves, 

voltage-derivative functions (dV/dt-t and dV/dt-V) also were recorded 

of the test solutions using the triangular waveform. Figure 2A shows 
the curvesobtained during aresistive load, the V-I curve is 
a straight line, while the V-t curve maintains the waveform of the 
input signal, except that it is slightly reduced in amplitude. The 

dV/dt-t and the dV/dt-V curves exhibit some rounding but, in theory, 

should be perfectly square. Figure 3A shows the circuitry used to 

obtain the derivative curves. 

In conventional polarography involving a small concentration of a 

reducible species in a supporting electrolyte, the derivative voltage- 

time curve (dV/dt-t) exhibits a sharp incision at the point where 

reduction occurs (i.e., reduction potential). By correlation with the 

voltage-time curve, the potential at this point can be determined. 

However, by use of a dV/dt-V plot, only a single sweep is required. 

The position of the incision (or its distance from the potential axis) 
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+tl T O R E F E R E N C E  ELECTRODE 

R dV 'dt 

TO WORKING ELECTRODL 4 

+-?----) T O R E F E R E N C E  ELECTRODE 

TO WORKING ELECTRODE 

C - 1 O u F  
R -1KQ 

Figure  3 A .  C i r c u i t  f o r  Obtaining Der iva t ive  Curves 
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gives a measure of the corresponding concentration. For a reversible 

reduction, the cathodic and anodic incisions appear at the same 

potential. 

A large number of test solutions that were used in the electrodeposition 

studies were scanned using the triangular waveform. The voltage derivative 

(dV/dt-V) curves for many of these solutions are present in the 

Appendix. 
lyzed for 20-22 hours at 20 mA/cm 

electrodeposition studies. The "new" solutions were not previously 
electrolyzed. All solutions were scanned at the same sweep rate of 

lV/sec to a maximum potential of 5V (0.05Hz). 
data obtained was for the case of the used solutions. Usually, 

the solutions were scanned immediately after the conclusion of the 

electrodeposition tests. 

1) 

The "used" solutions are those that were previously electro- 
2 (0-05 1 solution volume) in the 

The majority of the 

A.2.1 Aluminum Platinp Solution 

Several scanning experiments were conducted with the APS alone to determine 
what effects extended periods of electrolysis and exposure to the at- 

mosphere would have upon the voltage derivative curves. 

Only one strong incision was observed in the case of the new APS - at 
-0.25V (upper portion of curve). 

incision was observed, it can be assigned to the electrodeposition of 

aluminum. Voltage derivative curves of AlCl -ether solutions obtained 

as the LiAlH content was increased (from 0.02M to 0.3OM) exhibited 

the incision at (or very near) -0.25V. This would indicate a fair 

degree of reversibility for the aluminum electrodeposition process. 

Indeed, anodic dissolution of aluminum during electrolysis of the APS has 

(See Figure 4A(a)). As only one 

3 
4 
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been found t o  take p l ace  a t  almost 100% c u r r e n t  e f f i c i e n c y .  

2 Af t e r  t h e  APS had been e l e c t r o l y z e d  f o r  22-24 hours a t  22 mA/cm , t h e  

peak a t  -0.25V (upper p a r t  o f  curve) w a s  s h i f t e d  t o  a much h ighe r  

p o t e n t i a l  (-0.40V), and t h e  conduc t iv i ty  o f  t h e  s o l u t i o n  w a s  reduced. 

I n  a d d i t i o n ,  s e v e r a l  new peaks were observed i n  t h e  bottom p o r t i o n  of t h e  

curve i n  t h e  -2.12V t o  -2 .17V range and i n  t h e  -1.02V to.-l.OV range. 

(Figure 4A(b). 

p o l a r i z a t i o n  as i n  t h e  case  of  t h e  new APS. 

The curve s t i l l  exh ib i t ed  about 0.5V of r e s i d u a l  

Upon d e t e r i o r a t i o n  of  t he  e l e c t r o l y z e d  s o l u t i o n  by exposure t o  t h e  

atmosphere a i r  f o r  a per iod  o f  t i m e  (40 minutes) ,  t he  peak near  -0.4OV 

w a s  s t i l l  p re sen t  ( -0 .46V)  but  now had become cons iderable  broader and much 

weaker i n  i n t e n s i t y .  The peak a t  - 2 . 1 V  no longer  was p r e s e n t ,  and t h e  

s t r o n g  peak a t  -1 .OV had been rep laced  by two weak peaks a t  - 1 . 1 V  and 

-1 .2V.  

dropped t o  almost zero. Thus, by use o f  t he  v o l t a g e  d e r i v a t i v e  cu rves ,  

one can monitor t h e  p l a t i n g  c h a r a c t e r i s t i c s  of t he  APS, and thereby ,  

determine whether o r  no t  t he  APS has d e t e r i o r a t e d .  

(Figure 4 A(cr). Also,  t h e  p o l a r i z a t i o n  a f t e r  each scan had 

A.2 .2  I n e r t  Organic Solvent Addi t ives  

I n  gene ra l ,  i n  t h e  case  of t he  i n e r t  o rganic  so lven t  a d d i t i v e s ,  t h e  

f i r s t  sha rp ,  s t r o n g  peak observed can be a t t r i b u t e d  t o  the  aluminum 

e l e c t r o d e p o s i t i o n  process .  For a completely r e v e r s i b l e  p rocess ,  t h e  

va lue  of t h e  peak obta ined  on the  vo l t age - inc reas ing  (upper) p o r t i o n  

of t h e  t r i a n g u l a r  sweep (upper p a r t  of curve) should be v e r y  n e a r l y  

the  same as t h a t  ob ta ined  dur ing  the  vol tage-decreas ing  (lower) p o r t i o n  
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Figure  4 A .  Voltage Der iva t ive  Curves f o r  Regular APS (contd) 
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of  t h e  curve.  I n  t h e  case o f  xylene (17% by volume), two sets of 

peaks w e r e  ob ta ined  (Figure 5A(a)). 

occurred a t  -0.25V on t h e  upper p o r t i o n  of t h e  curve ,  and a t  -0.23V on 

the  lower po r t ion .  

process (-1.3OV (upper) and - 1 . 8 5 V  (lower)). 

con ta in ing  i sopropyl  e t h e r  (29% d i l u t i o n ) ,  an a d d i t i o n a l  peak w a s  observed 

i n  t h e  range where aluminum d e p o s i t i o n  occurs (Figure 5A(b)). During 

e l e c t r o l y s i s ,  t h e r e f o r e ,  one would expect a r educ t ion  i n  the ca thodic  

c u r r e n t  e f f i c i e n c y  a s  a r e s u l t .  This w a s  found t o  be t r u e .  Some a d d i t i o n a l  

e lec t rochemica l  s o l u t i o n  process m u s t  be occur r ing  s imul taneous ly  wi th  

the  e l e c t r o d e p o s i t i o n  of aluminum. 

The set due t o  aluminum reduc t ion  

The remaining peaks were due t o  some organic  r e d u c t i o n  

I n  t h e  case of t h e  APS 

m 

Simi la r  r e s u l t s  were noted f o r  t he  APS d i l u t e d  wi th  1 7 %  b i s  (2-butoxyethyl) 

e t h e r  (Figure 5A(c)).In t h i s  case, t h e  aluminum reduc t ion  p o t e n t i a l  w a s  

s h i f t e d  s l i g h t l y  t o  more nega t ive  va lues  (-0.36V). 

The organic  r educ t ion  process became more pronounced i n  t h e  case o f  t h e  

APS con ta in ing  n-butyl e t h e r  than f o r  t h e  case  of i sopropyl  e t h e r ,  b i s  

(2-butoxyethyl) e t h e r ,  o r  xylene.  A l a r g e  r educ t ion  i n  t h e  ca thod ic  

c u r r e n t  e f f i c i e n c y  occurred when the  d i l u t i o n  wi th  n-buty l  e t h e r  w a s  

increased  t o  29%. 

A.2.3 N i t r o  Compounds 

Very poor non-metall ic (or on ly  p a r t i a l l y  metall ic) e l e c t r o d e p o s i t s  were 

obta ined  when n i t r o  compounds were used as APS a d d i t i v e s .  I n  t h e  case 

of t h e  APS conta in ing  nitromethane (0.881M), a t h i n  s a l t  c r u s t  covered 

the  cathode a f t e r  e l e c t r o l y s i s .  None of the  peaks observed could d e f i m t e l y  

be ass igned  t o  t h e  aluminum e l e c t r o d e p o s i t i o n  process ,  i n  agreement wi th  

t h e  experimental  r e s u l t s  (Figures 6A(a) and 6A(b). 
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A.2.4 Inert Salt Additives 

The aluminum reduction potential was shifted toward a more positive value 

in the case of many of the halides additives (KC1, NH C1, LiC1, LiBr, and 

MgCl (Figures 7A(a) -7A(e)), 
4 

2 

In the case of the acetate additives to the APS (NaAc, KAc, and BeAc2), 
a strong additional peak was observed after the aluminum peak in the 

range of -0.9V to -1.5V (upper part of curve). The residual voltage 

was relatively large for the case of BeAc 

for KAc and NaAc (Figures 7A(f)-7A(h)). 

I )  

(-0.8V), but negligible 2 

An additional peak was observed in the potential range of aluminum 

electrodeposition in the case of the thiocyanate salt additives (NH SCN 
and KSCN). The residual voltage was large also (-0.5V to -0.7V). 

The nature of the resultant deposit (partially metallic, crumbly, 

flaky) corroborates the scanning data (Figures 7A(i)-7A(k)). 

The thi-ocyanate anion apparently interacts strongly with the aluminum 

solution complex to prevent the electrodeposition of pure aluminum. 

4 

The derivative curves for the APS containing the perchlorate salt 

additives (Mg (C104)2 and LiClO ) differed from the curve for the APS 

alone, mainly in the additional peaks noted on the lower portion of the 

curve (Figures 7A(1) and 7A(m). However , the resultant electrodeposits 
were quite poor, being dark, lamellar, and very crumbly. 

4 

In the case of the APS containing BeCl 
peak was observed near -2,40V (Figure 7A(n). However, no beryllium 
was detected in the deposit at this concentration, so that the peak 

cannot be assigned to a beryllium reduction process. 

(O.12M), and additional strong 2 
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The voltage derivative curve for the APS containing TiCl 
characterized by a large number of incisions {Figure 7A(o) ). The 
incision at -0.15V is probably due to electrodeposition of titanium, 

while that at -0.33V is due to electrodeposition of  aluminum. 

(Titanium was detected qualitatively in the electrodeposit from the 

above solution). Undoubtedly, some of the peaks observed in the lower 

portion of the curve are associated with the electrodeposition processes. 

(0.099M) was 4 

. 
The voltage derivative curve for the APS containing TiO(AcAc)2 (0.038M) 

was similar to those for the case of the APS containing TiCl in that 

a large number of incisions occurred (Figure 7A(p). 

peak appears in the same potential range for both systems, namely, 

-0.3OV to -0.35V. A number of peaks in the lo~er portion of the curve 

for this system also appeared in the derivative curves for the 

APS-Tic1 system, which suggests a similarity in at least a portion of  

the electodeposition process. Several additional peaks which occurred at 

potentials in excess of -2.OV were due to solution decomposition. 

4’ 
The aluminum 

4 

A qualitative check for titanium in the electrodeposit from the APS-Ti0 
(AcAc) bath was positive, although the amount of titanium present was 

small. 
2 

A.2.5 Amine Additives 

The derivative curve for the APS containing tetraethylammonium chloride 
(0.06M) exhibited the characteristic aluminum peak at -0.26V along with 

two sets of additional peaks due to some organic reduction process 

(Figure 8A{a$. 
(0.157M), two additional peaks at -0.6OV and -1.35V (lower part of curve) 
were pPrrsent along with the typical aluminum peak at -0.23V (upper part 

In the case of the APS containing 2,4-dimethylaniline 
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of curve) .  (See F igure  8A(b’$ A somewhat similar curve w a s  

ob ta ined  f o r  t h e  APS con ta in ing  phenylhydrizine hydrochlor ide  {0.0972M), 

except f o r  two a d d i t i o n a l  weak peaks - one on t h e  upper p a r t  o f  curve 

(at  -0.7V t o  -0.8V) and t h e  o t h e r  on the  lower p a r t  of t h e  curve 

(at  - 2 . 1 V  t o  -2.2V).  (See F igure  8A(c) ). 

The v o l t a g e  d e r i v a t i v e  curve f o r  t he  APS con ta in ing  o x y d i a n i l i n e  (0.1OM) 

contained on ly  t h r e e  i n c i s i o n s :  

a s s o c i a t e d  wi th  t h e  aluminum e l e c t r o d e p o s i t i o n  p rocess ,  and a t  -1.9V and 

-1.2V (lower p o r t i o n ) ,  corresponding t o  some o rgan ic  r educ t ion  process 

(Figure 8A(d) ). Apparently,  t h e  a d d i t i o n  of oxyd ian i l ine  

(4-aminophenyl e t h e r )  t o  t h e  APS has  t h e  e f f e c t  of s h i f t i n g  t h e  r educ t ion  

p o t e n t i a l  of  aluminum t o  a h ighe r  nega t ive  value.  

a t  -0.40V (upper p o r t i o n  of curve), 

A.2.6 N i t r i l e  Addi t ives  

No aluminum peak w a s  noted f o r  t h e  APS con ta in ing  a c e t o n i t r i l e  a t  a 

concen t r a t ion  of 0.908M (unused) - only  a broad, medium-intensity peak 

i n  t h e  range of -1.4V t o  - 1 . 8 V  (upper p a r t  of curve) .  

-2.OV t o  - 2 . 1 V  a l s o  occurred i n  the  bottom p a r t  of t he  curve (Figure 9A(a)). 

Af t e r  t h e  above s o l u t i o n  had been used ( e l ec t ro lyzed  f o r  some t i m e ) ,  

an a d d i t i o n a l  weak peak a t  -0.4V t o  -0.5V appeared (aluminum peak?). 

(See F igure  9Aib)). 

o rganic  reduct ion .  The scanning d a t a  wascorrobora ted  by t h e  e l e c t r o d e p o s i t i o n  

d a t a  i n  t h a t  no metal l ic  d e p o s i t  was obtained - on ly  a s a l t  coa t ing  on 

the  cathode. 

A peak a t  

I n  t h i s  c a s e ,  t he  major s o l u t i o n  process was the  

I n  t h e  case  of t h e  APS con ta in ing  b e n z o n i t r i l e ,  a hardened aluminum 

depos i t  was obtained f o r  concen t r a t ions  up t o  about 0.175M (Figure 

9A(c)). I n  a l l  cases, t h e  aluminum peak (at -0.15V t o  -0.20V) w a s  
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present in the derivative curve. At a benzonitrile concentration 
of 0.175M, after a considerable amount of plating time (57 hrs. at 

0.5A, 0.5 liter volume), additional strong-intensity peaks appeared 

indicating an increase in the organic reduction process (Figure 9A(d)). 

The voltage derivative curve for the APS containing 0.0855M p-tolunitrile 
was quite similar to that for the case of the APS alone, except for the 

peak on the lower portion of the curve at -0.44V (Figure 9A(e)).When 
the concentration of p-tolunitrile was doubled, additional peaks 

appeared and the residual polarization voltage was much higher 

(Figure 9A(f)). 

The voltage derivative curve for the APS containing phthalonitrile 
(0.0851M) was quite similar in shape to that for the same concentration 

of p-tolunitrile with similar measured reduction potentials (Figure 9A(g)). 

The reduction potential values for the voltage derivative. curves for 

the APS containing 4-biphenylcarbonitrile (0.1OOM) were not very 

repeatable (Figure 9A(h)). In fact, the derivative curve did not 
have the same general shape on successive scans in many instances. 

A.2.7 Amide Additives 

The voltage derivative curve for the APS containing phenylacetamide 
(0.089M) exhibited the typical aluminum peak at -0.237 with several very 

weak, broad peaks at -2.05V and -2.50V (upper portion of curve), (See 

Figure 10A(a)). 
on the lower portion of the curve at -2.30V, -1.95V, and -1.02V. 

There were also several somewhat stronger incisions 
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In the case of the dimethylformide additive (Figure lOA(b)), no 

aluminum peak was evident where one normally occurs in the voltage 

derivative curve (at less than -0.5OV). However, since a coherent 

aluminum deposit was obtained, one of the higher valued peaks must be 

associated with the aluminum electrodeposition process. 

The aluminum peak was shifted to slightly more negative potentials 

(slightly above -0.3V) for the following additives: ure% (O.lOM), 
benzamide (O.O75M), and p-toluamide (0.074M). (See Figures 10A(c), 

10A(d), and 10A(e)). All the above curves exhibited additional 
peaks due to some secondary reduction process, The derivative curve 

for the APS containing acetanilide (0.094M) was quite similar to that 
of the APS alone, with several additional reduction peaks(Figure 10A(f)) 

at-1.80V and -0.86 V on the lower portion of the curve. 

A.2.8 Hetrocyclic Compound Additives 

The voltage derivative curve for the APS containing a concentration of 
pyridine of 0.06M was not very different from that of the APS alone 
except for some additional broad, rather weak peaks at potentials above 

the aluminum reduction potential (Figure 11ACa)). The pyridine-containing 

APS produced the best electrodeposit at a concentration of pyridine of 
0.125M. The voltage derivative curve for this solution after and before 

the electrodeposition test (i.e., "used" and "new"), were completely 

different indicating a considerable chemical change had taken place as a 

result of the electrolysis (Figure 11A(b) and 11A(c), respectively). 

As the concentration of pyridine was increased, the shape of the derivative 
curve changed somewhat - especially at the higher concentrations. 
concentration of 0.25M, the aluminum peak had become weak and a sharp, 
much stronger peak now appeared at -0.79V (Figure 11A(d)). 

At a 
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The voltage derivative curve for the APS containing 0.1OM of 2,2'- 

bipyridine (Figure 11A(e)) exhibited an extremely weak and broad peak 

(at -0,32V) in potential range of aluminum deposition. The electrodeposit 

in this case was quite poor, being very crumbly and nonmetallic in nature. 

The aluminum peak for the case of the indole additive (0.086M) was shifted 

to a slightly less negative potential relative to that of the APS alone 
(-0.10V versus -0.25V, respectively). (See Figure llA(f3). 

At a concentration of morpholine of 0.225M (initially) in the APS, the 
voltage derivative curve exhibited an additional peak at-0.20~ in addition 

to the typical aluminum peak at -0.3OV (Figure 11A(g)). 

A.2.9 Ester Additives 

The derivative curve for the case of the APS containing an organic ester 

additive, ethyl acetate (O.O92M), was similar to that of the APS alone, 
but with some additional peaks at the higher potentials (Figure 12A(a)), 

The derivative curve for the APS containing an inorganic ester additive, 

tri-n-butyl phosphate (O.O97M), was not similar in shape to that for 

ethyl acetate (Figure 12A(b)). TWO closely-spaced peaks were present 
(at -0.18V and -0.25~ in the aluminum deposition potential range, 
compared to only one for the case of ethyl acetate (at -0.27V). 

A.2..10 Orpanometallic Additives 

In the case of ferrocene, the derivative curve was very similar to that 

of the APS alone (Figure 13A(a)), except for additional peaks in the 

lower portion of the curve. A qualitative check for iron in the electro- 
deposit was negative. 

L 
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No additional peaks were discernible in the neighborhood of the aluminum 

peak at -0.33V in the voltage derivative curve for the APS containing 
titanocene dichloride (0.098M). (See Figure 13A(b)). However, 

several of the peaks which occurred for the case Of the APS containing 
TiCl and titanyl acetylacetonate also were present in the present case, 

so that similar processes were probably occurring in all three solutions 

(i.e., titanium electrodeposition). A qualitative check for titanium in 

the electrodeposit was positive. 

4 

I 

A .  3 SUMMARY OF ELECTROLYTE SCANNING STUDIES 

The majority of the aluminum plating solutions (mainly used) which produced 
a metallic aluminum deposit were characterized by a well-defined peak in 
the voltage derivative curve, generally in the potential range of 

-0.15V to -0.3OV (aluminum peak). However, the aluminum peaks for 

the case of the APS additives KC1 (0.089M) and LiBr (0.092M) occurred at 

a very low potential of -O.O3V, while those for 4-biphenylcarbonitrile 

(0.1M) and dimethylformamide (0.13M) occurred at a potential in 

excess of -0.50V. 

However, the presence of a sharp aluminum peak in the derivative 

curve of a test solution was no guarantee that a satisfactory 

aluminum electrodeposit would be obtained; this only indicated that 

aluminum electrodeposition was taking place. In some cases, these 
were other electrochemical reactions occurring simultaneously, 

and the resultant electrodeposit was severely deteriorated (e.g. , 
dark, powdery, with occluded salt), as for example, in the case 

of the thiocyanate additives KSCN (0.086M) and NH SCN (0.066M). 

The voltage derivative curves in both instances exhibited a second 

smaller and weaker peak at approximately 0.1V before the aluminum peak. 

4 
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The pe rch lo ra t e  a d d i t i v e s  t o  the  APS (Mg(Cl0 ) and L i C l O  ) r e s u l t e d  

i n  e l e c t r o d e p o s i t s  which w e r e  s i m i l a r  i n  appearance t o  those  f o r  t h e  

case  of t h e  th iocyanate  a d d i t i v e s .  I n  t h i s  c a s e ,  however, though 

no a d d i t i o n a l  peaks were observed ad jacen t  t o  t h e  aluminum peak i n  

t h e  vo l t age  d e r i v a t i v e  curve ,  o t h e r  peaks were p resen t  a t  p o t e n t i a l s  

more nega t ive  than t h e  aluminum peak. This i n d i c a t e s  the  presence 

4 2  4 

of a d d i t i o n a l  e lec t rochemica l  r e a c t i o n s  (other  than aluminum e l e c t r o -  

depos i t ion)  during e l e c t r o l y s i s ,  such as so lven t  decomposition 

( ioe . ,  o rganic  r educ t ion  processes) .  The e x t e n t  o f  t hese  r e a c t i o n s  

can be es t imated  from the  depth and sharpness  o f  t he  i n c i s i o n s  {peaks). 

. 

The vo l t age  d e r i v a t i v e  curves f o r  t he  APS con ta in ing  i sopropyl  e t h e r  

(29% by volume) o r  b i s  (2-butoxyethyl) e t h e r  (17% by volume) were 

s imi l a r  t o  those f o r  the  case of  t h e  th iocyanate  APS a d d i t i v e s ,  

i n  t h a t  two c l o s e l y  spaced peaks were present  a t  t he  aluminum 

reduc t ion  p o t e n t i a l .  However, i n  the case o f  t he  e t h e r  a d d i t i v e s ,  

t he  d e p o s i t  ob ta ined  was q u i t e  s a t i s f a c t o r y ,  and w a s  no t  s eve re ly  

d e t e r i o r a t e d  as i n  the  case  of t h e  th iocyanate  a d d i t i v e s .  

During t h e  p re sen t  s tudy ,  vo l t age  d e r i v a t i v e  curves  were obta ined  

of t he  APS when i t  w a s  f r e s h  and unused, when i t  had been e l e c t r o l y z e d  

f o r  an  extended per iod of t i m e  (s t i l l  y i e l d i n g  a s a t i s f a c t o r y  d e p o s i t ) ,  

and when i t  had completely d e t e r i o r a t e d  (Figures4A(a)-4A(c)). The 

curves f o r  t h e  f i r s t  two cases  were somewhat s i m i l a r  i n  appearance,  bu t  

the  curve f o r  t he  case  of the  d e t e r i o r a t e d  APS was d r a s t i c a l l y  d i f f e r e n t .  

Thus, APS d e t e r i o r a t i o n  can r e a d i l y  be de t ec t ed  through t h e  use of t he  

scanning technique. 
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Monitoring the bath plating characteristics by use of the scanning 

technique proved useful in another instance. Unexpected deterioration 

of a used portion of mixed-ether (anisole-ethyl ether) APS resulted in 
a black, scum coating on the cathode during electrolysis instead of the 

usual metallic aluminum deposit. The deterioration was traced to a leak 

in the refrigeration unit connected to the glove box. A leak in the 

cooling coils inside the glove box resulted in the contamination of the 

entire glove-box atmosphere, and, thereby, the plating solution.The 

usual conductivity measurements showed essentially no difference before 

and after the deterioration. The respective voltage derivative curves, 

however, were considerably different. The curve obtained before the 

deterioration occurred (Figure 14A(a)) showed the typical aluminum 
peak at about -0.48V, which is somewhat higher than that for the regular 

APS. In the case of the deteriorated solution, the aluminum peak 

either was absent or so weak and broad as to be undectable 

(Figure 14A(b)). 

e 

A l s o ,  the shape of  the curve had changed drastically. 

By periodically monitoring the plating solution via the scanning technique, 
therefore, one can save considerable wasted time and effort in aluminum 

electroforming should any subsequent contamination of the plating 

solution reoccur. 

A. 4 CONCLUSIONS TO ELECTROLYTE SCANNING STUDIES 

The voltage derivative (scanning) data for the regular APS and the 

mixed-ether APS were found to be useful for monitoring’the plating 
characteristics in order to detect bath deterioration - especially 
where the usual conductivity tests failed. This technique can be applied 

7 248-Final 97 



u 
Q) 
v) 

\ > 
E - 

-ts 
\ > 
W 

(a) USED MIXED ETHER 
SOLN. (ANISOLE: 
ETHYL ETHER= 2:1, 

(a), DETERIORATED 

0 0.50 1.0 1.5 2.0 2.5 3.0 ’ 3.5 4.0 4.5 5.0 

WORKING ELECTRODE VS REFERENCE ELECTRODE 
( -  volts) 

Figure 14A. Voltage Der iva t ive  Curves for Mixed-Ether APS 

7248-Final 98 

2084 



s i m i l a r l y  t o  o the r  t e s t  aluminum p l a t i n g  s o l u t i o n s .  The p resen t  amount 

of d a t a  i s  i n s u f f i c i e n t ,  however, t o  draw conclusions concerning t h e  

use of e l e c t r o l y t e  scanning as a means of e s t ima t ing  t h e  l i f e  of t h e  

p l a t i n g  ba th ,  To explore  t h i s  p o s s i b i l i t y  f u r t h e r  would r e q u i r e  an 

ex tens ive  compilat ion of scanning d a t a  over t h e  l i f e t i m e  of t h e  ba th  - 
from t h e  t i m e  i t  w a s  f r e s h l y  prepared u n t i l  t he  t i m e  a s a t i s f a c t o r y  depos i t  

w a s  no longer  obtained.  S t i l l ,  t he  scanning technique w a s  u se fu l  f o r  t e s t i n g  

f o r  t o t a l  d e t e r i o r a t i o n  i n  t h e  case of t h e  r e g u l a r  APS 8nd mixed-ether A P S .  

The d a t a  obta ined  from the vo l t age  d e r i v a t i v e  curves f o r  t he  va r ious  

t es t  s o l u t i o n s  (mainly used aluminum p l a t i n g  s o l u t i o n s )  were use fu l  

f o r  d e t e c t i n g  i f  e lec t rochemica l  r e a c t i o n s  ( i o e . ,  o rganic  r educ t ion  

porcesses)  o the r  than aluminum d e p c s i t i o n  were t ak ing  p lace .  The e x t e n t  

of  t hese  r e a c t i o n s  were ind ica t ed  by t h e  depth and sharpness  of t h e  

a d d i t i o n a l  i n c i s i o n s  on t h e  d e r i v a t i v e  curves ,  

While t h e  e l e c t r o l y t e  scanning technique w a s  u s e f u l  f o r  a s c e r t a i n i n g  

whether aluminum w a s  e l ec t rodepos i t ed  upon e l e c t r o l y s i s  of a 

tes t  APS, it gave no information as to  t h e  na tu re  o f  the  e l e c t r o d e p o s i t .  

T e s t  s o l u t i o n s  which possessed vo l t age  d e r i v a t i v e  curves which w e r e  

similar i n  appearance y ie lded  e l e c t r o d e p o s i t s  which w e r e  e n t i r e l y  

d i f f e r e n t  - as i n  the  case  of t h e  e t h e r  and th iocyanate  a d d i t i v e s .  

Thus, one cannot p r e d i c t  whether t h e  r e s u l t a n t  e l e c t r o d e p o s i t  from a 

tes t  APS w i l l  be completely m e t a l l i c  o r  only p a r t i a l l y  metal l ic  (with 

organic  occ lus ions ) ,  hard o r  s o f t ,  b r i t t l e  o r  s t rong ,  coherent  o r  powdery. 

For t h i s ,  one u l t i m a t e l y  must e l e c t r o l y z e  t h e  test s o l u t i o n  f o r  a per iod 

of t i m e .  
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